A Brief Note on Computing a BLOSUM Matrix

ChengXiang Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign
October 9, 2005

BLOSUM (for BLOcks SUbstitution Matrix) is a commonly used scoring matrix for sequence alignment. It gives a score for each pair of amino acids based on how likely we will observe such a pair in alignments of truly conserved blocks of amino acids. A higher score indicates that such a pair of amino acids are often seen to be aligned to each other when we align functionally similar proteins with each other.

There are three steps in computing a BLOSUM matrix, which we explain below.

1 Collecting sample blocks

We first collect a sample of blocks of amino acids that represent conserved regions, which can be obtained from proteins that are known to be in the same functional family. A block of amino acids is a set of equal-length strings of amino acids, such as the following:

\[
\begin{array}{ccc}
A & B & C \\
B & B & C \\
A & B & C \\
A & C & B \\
\end{array}
\]

The sample is typically weighted according to an identity threshold to model either long-time evolution or recent evolution. When modeling long-time evolution, we down-weight those amino acid sequences that are very similar to each other in a block so that distinct amino acids would have a higher chance of getting high scores, which is reasonable since after long-time evolution, an amino acid is more likely to be changed to a different one. The “identity threshold” (e.g., 62%) for defining which sequences to be taken as “very similar” is often used to label the variants of a BLOSUM matrix. For example, BLOSUM62 is computed using the threshold of 62%. The higher the threshold is, the more we would tolerate alignment of two distinct amino acids.

2 Computing probabilities

The basic idea of BLOSUM is, for each pair of amino acids, to compare the actual observed frequency of them being aligned together in our block sample with their expected frequency of being aligned together if they occur independently. Thus we will be interested in (1) the probability of observing each amino acid in the sample; and (2) the probability of observing a pair of amino acid aligned to each other in our sample.

To simplify the explanation of the essential ideas, we assume that each sequence has an equal weight; the methods can be easily generalized to deal with weighted sequences. In the homework, you do not need
to worry about sequence weighting.

Given a set of sequences \(S = \{S_1, ..., S_k\} \), each with \(n \) amino acids, i.e., \(S_i = s_{i1}...s_{in} \), where \(s_{ij} \) is the \(j \)-th amino acid in sequence \(S_i \). The probability of observing each amino acid \(X \) can be estimated as the relative frequency count of \(X \) in all the observed sequences, i.e.,

\[
p(X) = \frac{\sum_{i=1}^{k} c(X, S_i)}{\sum_{X' \in \mathcal{A}} \sum_{i=1}^{k} c(X', S_i)}
\]

where \(c(X, S_i) \) is the count of amino acid \(X \) in sequence \(S_i \), \(\mathcal{A} \) is the set of all the 20 amino acids.

Suppose we randomly sample a pair of amino acids according to \(p(X) \) to form an alignment. Let \(\{X, Y\} \) denote an alignment of amino acids \(X \) and \(Y \). Note that we do not distinguish the order, so \(\{X, Y\} \) and \(\{Y, X\} \) would denote the same alignment. The chance of having an alignment \(\{X, Y\} \), where \(X \neq Y \), would be \(2p(X)p(Y) \) because we can either first generate \(X \) then \(Y \) or first generate \(Y \) then \(X \), while the chance of having an alignment \(\{X, X\} \) would be \(p(X)^2 \). That is,

\[
p(X, Y|\text{random}) = \begin{cases} p(X)^2 & \text{if } X = Y \\ 2p(X)p(Y) & \text{otherwise} \end{cases}
\]

Now consider all the possible alignments we can obtain by doing pairwise alignment of \(S_1, ..., S_k \). We will have \(\frac{k(k-1)}{2} \) pairwise sequence alignments. Since each sequence has \(n \) amino acid, we have a total of \(m = \frac{n k(k-1)}{2} \) pairwise amino acid alignments, which we denote as \(M = \{\{X_j, Y_j\}\} \), where \(j = 1, ..., m \).

Using \(M \) as our sample, we can now count how many times we see a particular pair of amino acids, \(\{X, Y\} \), which we denote by \(c(\{X, Y\}, M) \). The probability of observing a pair of alignment \(\{X, Y\} \) \textit{in our sample} can thus be estimated as

\[
p(X, Y|\text{sample}) = \frac{c(\{X, Y\}, M)}{m}
\]

One potential problem is when \(c(\{X, Y\}, M) = 0 \), i.e., when we do not see \(\{X, Y\} \) in our sample alignments. To avoid assigning zero probability to any pair, we can smooth the probability estimate by giving each pair an extra “pseudo count”. As a result, we will have

\[
p(X, Y|\text{sample}) = \frac{c(\{X, Y\}, M) + 1}{m + \mu}
\]

where \(\mu = (|\mathcal{A}|(|\mathcal{A}| - 1)/2) + |\mathcal{A}| = |\mathcal{A}|(|\mathcal{A}| + 1)/2 \) is the total number of pseudo counts we added and is equal to the total number of pairs of amino acids. In the homework, since \(\mathcal{A} = \{A, B, C\} \), we have \(M = 6 \). The six pairs are

\[
\{\{A, A\}, \{B, B\}, \{C, C\}, \{A, B\}, \{A, C\}, \{B, C\}\}
\]

3 Computing the BLOSUM matrix

Once we have these probabilities, the score of an amino acid pair \(\{X, Y\} \) is obtained as

\[
score(X, Y) = score(Y, X) = 2 \log_2 \frac{p(\{X, Y\}|\text{sample})}{p(\{X, Y\}|\text{random})}
\]

In the homework, I defined the score similarly but without the constant 2.