Modern Retrieval Evaluations

Hongning Wang
CS@UVa
What we have known about IR evaluations

• Three key elements for IR evaluation
 – A document collection
 – A test suite of information needs
 – A set of relevance judgments

• Evaluation of unranked retrieval sets
 – Precision/Recall

• Evaluation of ranked retrieval sets
 – P@k, MAP, MRR, NDCG

• Statistic significance
 – Avoid randomness in evaluation
Rethink retrieval evaluation

• Goal of any IR system
 – Satisfying users’ information need

• Core quality measure criterion
 – “how well a system meets the information needs of its users.” – wiki

• Are traditional IR evaluations qualified for this purpose?
 – What is missing?
Do user preferences and evaluation measures line up? [Sanderson et al. SIGIR’10]

- Research question
 1. Does effectiveness measured on a test collection predict user preferences for one IR system over another?
 2. If such a predictive power exists, does the strength of prediction vary across different search tasks and topic types?
 3. If present, does the predictive power vary when different effectiveness measures are employed?
 4. When choosing one system over another, what are the reasons given by users for their choice?
Experiment settings

• User population
 – Crowd sourcing
 • Mechanical Turk
 • 296 ordinary users

• Test collection
 – TREC’09 Web track
 • 50 million documents from ClueWeb09
 – 30 topics
 • Each included several sub-topics
 • Binary relevance judgment against the sub-topics
Experiment settings

- IR systems
 - 19 runs of submissions to the TREC evaluation

Users need to make side-by-side comparison to give their preferences over the ranking results.
Experimental results

• User preferences v.s. retrieval metrics

<table>
<thead>
<tr>
<th>Users</th>
<th>nDCG</th>
<th>MRR</th>
<th>P(10)</th>
<th>ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>160</td>
<td>159</td>
<td>131</td>
<td>164</td>
</tr>
<tr>
<td>Rnk eql</td>
<td>21</td>
<td>21</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Disgree</td>
<td>66</td>
<td>57</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>247</td>
<td>237</td>
<td>210</td>
<td>247</td>
</tr>
</tbody>
</table>

– Metrics generally match users’ preferences, no significant differences between metrics
Experimental results

• Zoom into nDCG
 – Separate the comparison into groups of small differences and large differences

<table>
<thead>
<tr>
<th>Users</th>
<th>nDCG</th>
<th>Small Δ</th>
<th>Large Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>160</td>
<td>96</td>
<td>64</td>
</tr>
<tr>
<td>Rank equal</td>
<td>21</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Disagree</td>
<td>66</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>247</td>
<td>155</td>
<td>92</td>
</tr>
</tbody>
</table>

– Users tend to agree more when the difference between the ranking results is large
Experimental results

• What if when one system did not retrieve anything relevant

<table>
<thead>
<tr>
<th>Users</th>
<th>nDCG</th>
<th>MRR</th>
<th>P(10)</th>
<th>ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>88 72%</td>
<td>88 72%</td>
<td>88 72%</td>
<td>88 72%</td>
</tr>
<tr>
<td>Rnk eql</td>
<td>10 8%</td>
<td>10 8%</td>
<td>10 8%</td>
<td>10 8%</td>
</tr>
<tr>
<td>Disagree</td>
<td>24 20%</td>
<td>24 20%</td>
<td>24 20%</td>
<td>24 20%</td>
</tr>
</tbody>
</table>

122 122 122 122

– All metrics tell the same and mostly align with the users
Experimental results

• What if when both systems retrieved something relevant at top positions

<table>
<thead>
<tr>
<th>Users</th>
<th>nDCG</th>
<th>MRR</th>
<th>P(10)</th>
<th>ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>72</td>
<td>56%</td>
<td>43</td>
<td>76</td>
</tr>
<tr>
<td>Rnk eql</td>
<td>11</td>
<td>9%</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Disagree</td>
<td>42</td>
<td>33%</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Ties</td>
<td>3</td>
<td>2%</td>
<td>40</td>
<td>3</td>
</tr>
</tbody>
</table>

– P@10 cannot distinguish the difference between systems
Conclusions of this study

• IR evaluation metrics measured on a test collection predicted user preferences for one IR system over another
• The correlation is strong when the performance difference is large
• Effectiveness of different metrics vary
How does clickthrough data reflect retrieval quality [Radlinski CIKM’08]

• User behavior oriented retrieval evaluation
 – Low cost
 – Large scale
 – Natural usage context and utility

• Common practice in modern search engine systems
 – A/B test
A/B test

• Two-sample hypothesis testing
 – Two versions (A and B) are compared, which are identical except for one variation that might affect a user's behavior
 • E.g., BM25 with different parameter settings
 – Randomized experiment
 • Separate the population into equal size groups
 – 10% random users for system A and 10% random users for system B
 • Null hypothesis: no difference between system A and B
 – Z-test, t-test
Behavior-based metrics

• Abandonment Rate
 – Fraction of queries for which no results were clicked on

• Reformulation Rate
 – Fraction of queries that were followed by another query during the same session

• Queries per Session
 – Mean number of queries issued by a user during a session
Behavior-based metrics

• Clicks per Query
 – Mean number of results that are clicked for each query

• Max Reciprocal Rank
 – Max value of $1/r$, where r is the rank of the highest ranked result clicked on

• Mean Reciprocal Rank
 – Mean value of $\sum_i 1/r_i$, summing over the ranks r_i of all clicks for each query

• Time to First Click
 – Mean time from query being issued until first click on any result

• Time to Last Click
 • Mean time from query being issued until last click on any result
Behavior-based metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Change as ranking gets worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandonment rate</td>
<td>Increase (more bad result sets)</td>
</tr>
<tr>
<td>Reformulation rate</td>
<td>Increase (more need to reformulate)</td>
</tr>
<tr>
<td>Queries per session</td>
<td>Increase (more need to reformulate)</td>
</tr>
<tr>
<td>Clicks per query</td>
<td>Decrease (fewer relevant results)</td>
</tr>
<tr>
<td>Max recip. rank</td>
<td>Decrease (top results are worse)</td>
</tr>
<tr>
<td>Mean recip. rank</td>
<td>Decrease (more need for many clicks)</td>
</tr>
<tr>
<td>Time to first click</td>
<td>Increase (good results are lower)</td>
</tr>
<tr>
<td>Time to last click</td>
<td>Decrease (fewer relevant results)</td>
</tr>
</tbody>
</table>
Experiment setup

• Philosophy
 – Given systems with known relative ranking performance
 – Test which metric can recognize such difference

Reverse thinking of hypothesis testing
 • In hypothesis testing, we choose system by test statistics
 • In this study, we choose test statistics by systems
Constructing comparison systems

• Orig > Flat > Rand
 – Orig: original ranking algorithm from arXiv.org
 – Flat: remove structure features (known to be important) in original ranking algorithm
 – Rand: random shuffling of Flat’s results

• Orig > Swap2 > Swap4
 – Swap2: randomly selects two documents from top 5 and swaps them with two random documents from rank 6 through 10 (the same for next page)
 – Swap4: similar to Swap2, but select four documents for swap
Result for A/B test

- 1/6 users of arXiv.org are routed to each of the testing system in one month period
Result for A/B test

• 1/6 users of arXiv.org are routed to each of the testing system in one month period
Result for A/B test

- Few of such comparisons are significant

<table>
<thead>
<tr>
<th>Metric</th>
<th>Weak</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandonment Rate (Mean)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Reformulation Rate (Mean)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Queries per Session (Mean)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Clicks per Query (Mean)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Max Reciprocal Rank (Mean)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Mean Reciprocal Rank (Mean)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Time (s) to First Click (Median)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Time (s) to Last Click (Median)</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Interleave test

• Design principle from sensory analysis
 – Instead of giving absolute ratings, ask for relative comparison between alternatives
 • E.g., is A better than B?
 – Randomized experiment
 • Interleave results from both A and B
 • Giving interleaved results to the same population and ask for their preference
 • Hypothesis test over preference votes
Interleave for IR evaluation

• Team-draft interleaving

Input: Rankings $A = (a_1, a_2, \ldots)$ and $B = (b_1, b_2, \ldots)$

Init: $I \leftarrow ()$; $TeamA \leftarrow \emptyset$; $TeamB \leftarrow \emptyset$

while $(\exists i : A[i] \notin I) \land (\exists j : B[j] \notin I)$ **do**

 if $(|TeamA| < |TeamB|) \lor$
 $(|TeamA| = |TeamB|) \land (\text{RandBit}() = 1)$ **then**

 $k \leftarrow \min_i \{i : A[i] \notin I\}$ top result in A not yet in I
 $I \leftarrow I + A[k]$; append it to I
 $TeamA \leftarrow TeamA \cup \{A[k]\}$ clicks credited to A

 else

 $k \leftarrow \min_i \{i : B[i] \notin I\}$ top result in B not yet in I
 $I \leftarrow I + B[k]$ append it to I
 $TeamB \leftarrow TeamB \cup \{B[k]\}$ clicks credited to B

 end if

end while

Output: Interleaved ranking I, $TeamA$, $TeamB$
Interleave for IR evaluation

• Team-draft interleaving

| Ranking A: | 2 | 3 | 1 | 4 | 5 | 7 | 8 | 6 |
| Ranking B: | 1 | 2 | 5 | 3 | 6 | 8 | 7 | 4 |

RND = 0

Interleaved ranking: 1 2 3 5 4 6
Result for interleaved test

- 1/6 users of arXiv.org are routed to each of the testing system in one month period
 - Test which group receives more clicks

<table>
<thead>
<tr>
<th>Comparison Pair</th>
<th>Query Based</th>
<th>User Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A wins</td>
<td>B wins</td>
</tr>
<tr>
<td>Orig > Flat</td>
<td>47.7%</td>
<td>37.3%</td>
</tr>
<tr>
<td>Flat > Rand</td>
<td>46.7%</td>
<td>39.7%</td>
</tr>
<tr>
<td>Orig > Rand</td>
<td>55.6%</td>
<td>29.8%</td>
</tr>
<tr>
<td>Orig > Swap2</td>
<td>44.4%</td>
<td>40.3%</td>
</tr>
<tr>
<td>Swap2 > Swap4</td>
<td>44.2%</td>
<td>40.3%</td>
</tr>
<tr>
<td>Orig > Swap4</td>
<td>47.7%</td>
<td>37.8%</td>
</tr>
</tbody>
</table>
Conclusions

• Interleaved test is more accurate and sensitive
 – 4 out of 6 experiments follows our expectation
• Only click count is utilized in this interleaved test
 – More aspects can be evaluated
 • E.g., dwell-time, reciprocal rank, if leads to download, is last click, is first click
Comparing the sensitivity of information retrieval metrics [Radlinski & Craswell, SIGIR’10]

• How sensitive are those IR evaluation metrics?
 – How many queries do we need to get a confident comparison result?
 – How quickly it can recognize the difference between different IR systems?
Experiment setup

• IR systems with known search effectiveness
• Large set of annotated corpus
 – 12k queries
 – Each retrieved document is labeled into 5-grade level
• Large collection of real users’ clicks from a major commercial search engine
• Approach
 – Gradually increase evaluation query size to investigate the conclusion of metrics
Sensitivity of NDCG@5

System effectiveness: A>B>C
Sensitivity of $P@5$

System effectiveness: $A>B>C$
Sensitivity of interleaving

The graph shows the frequency of better ranking winning by interleaving on the y-axis against the number of impressions sampled on the x-axis. Different line styles represent various experiments, such as majorAC, majorBC, majorAB, minorD, and minorE. The graph indicates that the frequency of better ranking winning increases as the number of impressions sampled increases for all experiments.
Correlation between IR metrics and interleaving

<table>
<thead>
<tr>
<th>Inter’l Scoring</th>
<th>IR Metric</th>
<th>Correlation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per impression</td>
<td>NDCG@5</td>
<td>0.882</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>MAP@10</td>
<td>0.689</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>P@5</td>
<td>0.662</td>
<td>0.223</td>
</tr>
<tr>
<td>Per query</td>
<td>NDCG@5</td>
<td>0.910</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>MAP@10</td>
<td>0.776</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>P@5</td>
<td>0.733</td>
<td>0.159</td>
</tr>
</tbody>
</table>
How to assess search result quality?

- **Query-level relevance evaluation**
 - Metrics: MAP, NDCG, MRR

- **Task-level satisfaction evaluation**
 - Users' satisfaction of the whole search task

 Goal: find existing work for "action-level search satisfaction prediction"
Example of search task

• Information need: *find out what metal can float on water*

<table>
<thead>
<tr>
<th>Search Actions</th>
<th>Engine</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: metals float on water</td>
<td>Google</td>
<td>10s</td>
</tr>
<tr>
<td>SR: wiki.answers.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR: blog.sciseek.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q: which metals float on water</td>
<td>Google</td>
<td>31s</td>
</tr>
<tr>
<td>Q: metals floating on water</td>
<td>Google</td>
<td>16s</td>
</tr>
<tr>
<td>SR: www.blurtit.com</td>
<td></td>
<td>5s</td>
</tr>
<tr>
<td>Q: metals floating on water</td>
<td>Bing</td>
<td>53s</td>
</tr>
<tr>
<td>Q: lithium sodium potassium float on water</td>
<td>Google</td>
<td>38s</td>
</tr>
<tr>
<td>SR: www.docbrown.info</td>
<td></td>
<td>15s</td>
</tr>
</tbody>
</table>
Beyond DCG: User Behavior as a Predictor of a Successful Search [Ahmed et al. WSDM’10]

- Modeling users’ sequential search behaviors with Markov models
 - A model for successful search patterns
 - A model for unsuccessful search patterns

ML for parameter estimation on annotated data set
Predict user satisfaction

• Choose the model that better explains users’ search behavior

\[P(S = 1|B) = \frac{(\text{Prior}) p(S=1) + (\text{Likelihood}) p(S=0)}{p(B)} \]

Prediction performance for search task satisfaction
What you should know

• IR evaluation metrics generally aligns with users’ result preferences
• A/B test v.s. interleaved test
• Sensitivity of evaluation metrics
• Direct evaluation of search satisfaction