Latent Semantic Analysis

Hongning Wang
CS@UVa
VS model in practice

- Document and query are represented by **term vectors**
 - Terms are not necessarily **orthogonal** to each other
 - Synonymy: car v.s. automobile
 - Polysemy: fly (action v.s. insect)

<table>
<thead>
<tr>
<th>Access</th>
<th>Document</th>
<th>Retrieval</th>
<th>Information</th>
<th>Theory</th>
<th>Database</th>
<th>Indexing</th>
<th>Computer</th>
<th>REL</th>
<th>MATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td>Doc 2</td>
<td></td>
<td></td>
<td></td>
<td>x*</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td>Doc 3</td>
<td>x</td>
<td></td>
<td>x*</td>
<td>x*</td>
<td></td>
<td></td>
<td>x</td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

Query: “IDF in computer-based information look-up”
Choosing basis for VS model

• A concept space is preferred
 – Semantic gap will be bridged
How to build such a space

• Automatic term expansion
 – Construction of thesaurus
 • WordNet
 – Clustering of words

• Word sense disambiguation
 – Dictionary-based
 • Relation between a pair of words should be similar as in text and dictionary’s description
 – Explore word usage context
How to build such a space

• Latent Semantic Analysis
 – Assumption: there is some underlying latent semantic structure in the data that is partially obscured by the randomness of word choice with respect to retrieval
 – It means: the observed term-document association data is contaminated by random noise
How to build such a space

• Solution
 – Low rank matrix approximation

Imagine this is *true* concept-document matrix
Imagine this is our observed term-document matrix
Random noise over the word selection in each document
Latent Semantic Analysis (LSA)

• Low rank approximation of term-document matrix $C_{M \times N}$

 – Goal: remove noise in the observed term-document association data

 – Solution: find a matrix with rank k which is closest to the original matrix in terms of Frobenius norm

$$\hat{Z} = \arg\min_{Z | \text{rank}(Z) = k} \| C - Z \|_F$$

$$= \arg\min_{Z | \text{rank}(Z) = k} \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C_{ij} - Z_{ij})^2}$$
Basic concepts in linear algebra

• Symmetric matrix
 – $C = C^T$

• Rank of a matrix
 – Number of linearly independent rows (columns) in a matrix $C_{M \times N}$
 – $\text{rank}(C_{M \times N}) \leq \min(M, N)$
Basic concepts in linear algebra

• Eigen system
 – For a square matrix \(C_{M \times M} \)
 – If \(Cx = \lambda x \), \(x \) is called the right eigenvector of \(C \) and \(\lambda \) is the corresponding eigenvalue

• For a symmetric full-rank matrix \(C_{M \times M} \)
 – We have its eigen-decomposition as
 - \(C = Q\Lambda Q^T \)
 - where the columns of \(Q \) are the orthogonal and normalized eigenvectors of \(C \) and \(\Lambda \) is a diagonal matrix whose entries are the eigenvalues of \(C \)
Basic concepts in linear algebra

• Singular value decomposition (SVD)

\[C_k = U \Sigma_k V^T \]

– We define \(C_{M \times N}^k = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^T \)

 • where we place \(\Sigma_{ii} \) in a descending order and set \(\Sigma_{ii} = \sqrt{\lambda_i} \) for \(i \leq k \), and \(\Sigma_{ii} = 0 \) for \(i > k \)
Latent Semantic Analysis (LSA)

• Solve LSA by SVD

\[C_k = U \Sigma_k V^T \]

1. Perform SVD on document-term adjacency matrix
2. Construct \(C_{M \times N}^k \) by only keeping the largest \(k \) singular values in \(\Sigma \) non-zero

Map to a lower dimensional space
\[C_k = U \Sigma_k V^T \]

- \(D_{M \times M} = C_{M \times N} \times C_{M \times N}^T \)
 - \(D_{ij} \): document-document similarity by counting how many terms co-occur in \(d_i \) and \(d_j \)
 - \(D = (U \Sigma V^T) \times (U \Sigma V^T)^T = U \Sigma^2 U^T \)
 - Eigen-decomposition of document-document similarity matrix
 - \(d_i \)'s new representation is then \((U \Sigma^{1/2})_i \) in this system (space)
 - In the lower dimensional space, we will only use the first \(k \) elements in \((U \Sigma^{1/2})_i \) to represent \(d_i \)
 - The same analysis applies to \(T_{N \times N} = C_{M \times N}^T \times C_{M \times N} \)
Geometric interpretation of LSA

- $C^k_{M \times N}(i, j)$ measures the relatedness between d_i and w_j in the k-dimensional space.
- Therefore
 - As $C^k_{M \times N} = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^T$.
 - d_i is represented as $\left(U_{M \times k} \Sigma^{2}_{k \times k} \right)_i$.
 - w_j is represented as $\left(V_{N \times k} \Sigma^{2}_{k \times k} \right)_j$.
Latent Semantic Analysis (LSA)

- Visualization

- Graph theory

- HCI

<table>
<thead>
<tr>
<th>Titles</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Human machine interface for Lab ABC computer applications</td>
</tr>
<tr>
<td>c2</td>
<td>A survey of user opinion of computer system response time</td>
</tr>
<tr>
<td>c3</td>
<td>The EPS user interface management system</td>
</tr>
<tr>
<td>c4</td>
<td>System and human system engineering testing of EPS</td>
</tr>
<tr>
<td>c5</td>
<td>Relation of user-perceived response time to error measurement</td>
</tr>
<tr>
<td>m1</td>
<td>The generation of random, binary, unordered trees</td>
</tr>
<tr>
<td>m2</td>
<td>The intersection graph of paths in trees</td>
</tr>
<tr>
<td>m3</td>
<td>Graph minors IV: Widths of trees and well-quasi-ordering</td>
</tr>
<tr>
<td>m4</td>
<td>Graph minors: A survey</td>
</tr>
</tbody>
</table>
What are those dimensions in LSA

- Principle component analysis
Latent Semantic Analysis (LSA)

• What we have achieved via LSA
 – Terms/documents that are closely associated are placed near one another in this new space
 – Terms that do not occur in a document may still close to it, if that is consistent with the major patterns of association in the data
 – A good choice of concept space for VS model!
LSA for retrieval

• Project queries into the new document space
 \[\tilde{q} = qV_{N \times k} \Sigma_{k \times k}^{-1} \]
 • Treat query as a pseudo document of term vector
 • Cosine similarity between query and documents in this lower-dimensional space
LSA for retrieval

q: "human computer interaction"

Graph theory

HC1

Titles

c1: Human machine interface for Lab ABC computer applications

c2: A survey of user opinion of computer system response time

c3: The EPS user interface management system

c4: System and human system engineering testing of EPS

c5: Relation of user-perceived response time to error measurement

m1: The generation of random, binary, unordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey
Discussions

• Computationally expensive
 – Time complexity $O(MN^2)$

• Empirically helpful for recall but not for precision
 – Recall increases as k decreases

• Optimal choice of k

• Difficult to handle dynamic corpus

• Difficult to interpret the decomposition results

We will come back to this later!
LSA beyond text

- Collaborative filtering
 - User item matrix stores for each user the rating for the items

<table>
<thead>
<tr>
<th></th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>i_4</th>
<th>i_5</th>
<th>\ldots</th>
<th>i_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>\ldots</td>
<td>1</td>
</tr>
<tr>
<td>u_2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>5</td>
</tr>
<tr>
<td>u_3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>4</td>
</tr>
<tr>
<td>u_4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>\ldots</td>
<td>2</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>u_{ℓ}</td>
<td>2</td>
<td>\ldots</td>
<td>4</td>
<td>\ldots</td>
<td>4</td>
<td>\ldots</td>
<td>1</td>
</tr>
</tbody>
</table>

Predicting unknown ratings
LSA beyond text

- Eigen face
LSA beyond text

• Cat from deep neuron network

One of the neurons in the artificial neural network, trained from still frames from unlabeled YouTube videos, learned to detect cats.
What you should know

• Assumption in LSA
• Interpretation of LSA
 – Low rank matrix approximation
 – Eigen-decomposition of co-occurrence matrix for documents and terms
• LSA for IR