Towards Natural Question-Guided Search

Alexander Kotov
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, lllinois 61801
akotov2 @illinois.edu

ABSTRACT

Web search is generally motivated by an information need.
Since asking well-formulated questions is the fastest and the
most natural way to obtain information for human beings,
almost all the queries posed to search engines correspond
to some underlying questions, which represent the informa-
tion need. Accurate determination of these questions may
substantially improve the quality of search results and us-
ability of search interfaces. In this paper, we propose a new
framework for question-guided search, in which a retrieval
system would automatically generate potentially interesting
questions to the users. Since the answers to such questions
are known to exist in search results, these questions can po-
tentially guide the users directly to the answers they are
looking for, eliminating the need to scan the documents in
the results list. Moreover, in case of imprecise or ambigu-
ous queries, automatically generated questions can naturally
engage the users into feedback cycles to refine their informa-
tion need and guide them towards their search goals. Im-
plementation of the proposed strategy raises new challenges
in content indexing, question generation, ranking and feed-
back. We proposed new methods to address these challenges
and evaluated them with a prototype system on a subset of
Wikipedia. The evaluation results show the promise of this
new question-guided search strategy.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Linguistic Pro-
cessing; H.3.3 [Information Search and Retrieval]: Rel-
evance feedback, Search process

General Terms

Algorithms, Experimentation

Keywords

Interactive search, query processing, search interface

1. INTRODUCTION

Presenting a ranked list of URL anchor texts and their
associated snippets in return for a user query has become a
standard interface for all major commercial search engines.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

ChengXiang Zhai
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, lllinois 61801
czhai@cs.uiuc.edu

While for most simple queries the ranked list-based presen-
tation of search results is sufficient to easily find relevant
documents, for more complicated queries it would take a
user significantly more time to peruse the long list of re-
turned documents and, potentially, reformulate the query
multiple times. In order to understand why existing search
interfaces often fail on certain types of queries and propose
an improvement, we need a closer look at the very nature of
search queries.

Almost all the queries are motivated by some underlying
question. For example, if a user is searching for information
about John Fitzgerald Kennedy, the easiest and the most
straightforward way to do so for a person, who is used to
keyword-based search, would be to pose a query, such as
“john kennedy” or “kennedy.” However, such a query does
not fully specify the user’s information need, which often
includes particular aspects of information about JFK that
a user is most interested in. For example, in this case, the
underlying question that has caused a user to search, might
be as broad as “Who is John Kennedy?” or as specific as
“When was Kennedy sworn as the President of the United
States?”.

The query-based search paradigm assumes that search en-
gine users have sufficient knowledge about the query domain
and are able to find good differentiator terms to make their
queries specific and precise. In reality, however, there is still
a large number of queries, which are over- or under-specified,
and it is often the case that the users are unable to find any-
thing useful as a result of their first search, sometimes even
after tedious perusal of document titles and snippets. This
has to do with the fact that in their daily life people naturally
tend to use verbose or imprecise statements to express their
requirements and, thus, are not used to formulating artificial
short string requests. According to [17], formulating natural
language questions is the most natural way for most search
engine users to express their information needs. Unfortu-
nately, state-of-the-art question answering systems cannot
yet accurately answer arbitrary natural language questions
posed by users.

Another widely recognized deficiency of modern search
systems is the lack of interactivity. Bookstein [2] points out
that information retrieval should be envisioned as a process,
in which the users are examining the retrieved documents
in sequence and the system can and should actively gather
the user feedback to adjust retrieval. For this reason, the
interface of search engines should reflect the fact that Web
search is a process, rather than an event. This work is an
attempt to emphasize the exploratory nature of Web search

by providing a search interface that helps the users refine
their queries with automatically generated natural language
questions, which can be answered precisely.

Ideally, questions should refine the query topic from mul-
tiple perspectives. For example, presented with the query
“john kennedy”, an interactive question-based retrieval sys-
tem can generate the following questions: “Who is John
Kennedy?”, “When was John Kennedy born?”, “What num-
ber president was John F. Kennedy?”, “Who killed President
Kennedy?”. Each of the above questions can be considered
as a clarification question, which puts the general query
terms in a specific context. Our intuition is that by auto-
matically generating clarification questions, an information
retrieval system would enable the users to interactively spec-
ify their information need. Since the questions are generated
based on the system’s internal information repository, they
can always be answered precisely, which is not always the
case with ordinary question answering systems. In addition
to providing answers, which are guaranteed to be correct,
this model of interaction also has the benefit of helping the
users to quickly navigate to the information they are looking
for, effectively eliminating the need to read the documents
to locate it.

Enabling interactive question-based retrieval requires ma-
jor changes to all components of the retrieval process: from
more sophisticated methods of content analysis to ranking
and feedback. Specifically, an interactive question-based re-
trieval system must be able to locate and index the con-
tent, which can be used for question generation, generate
well-formed and meaningful questions in response to user’s
queries and rank those questions in such a way that the most
interesting and relevant questions appear at the top of the
question list. In this paper, we propose solutions to all of the
above problems and evaluate our approach with a prototype
system.

The rest of this paper is organized as follows. In Section 2,
we provide a brief overview of existing work. Section 3 intro-
duces the general concept of question-guided search. Imple-
mentation details of the question-guided search framework
are presented in detail in Section 4. Section 5 presents the
results of an experimental evaluation of our question-guided
search engine prototype. Finally, in Section 6 we give con-
cluding remarks and identify directions for future work.

2. RELATED WORK

In this section, we provide an overview of research efforts
in two major research areas that are the closest to our work:
application of Natural Language Processing (NLP) methods
to Information Retrieval (IR) and presentation of search re-
sults. The brittleness of NLP methods have traditionally
been one of the major concerns and obstacles to using them
in IR. However, it has been experimentally shown in [20]
that “the speed and robustness of natural language process-
ing has improved to the point where it can be applied to
the real IR problems”. One of the research directions that
has recently gained particular attention is focused on using
lexical and semantic relations to improve the accuracy and
completeness of search results over the traditional “bag-of-
words” approaches. The importance of lexico-syntactic re-
lations for information retrieval was demonstrated by Wang
et al. [21]. Zhai et al. [23] experimentally showed that in-
dexing lexical atoms and syntactic phrases improves both
the precision and recall. Hearst [7] used the semantics of

lexico-syntactic patterns to automatically extract hyponym
relations between the lexical items in large corpora. Syntac-
tic pattern matching is also a popular technique in Question
Answering (QA) to improve the performance on factoid [11]
and definitional [4] questions. Katz et al. [12] extracted
syntactic relations between the words through dependency
parsing and used these relations to retrieve potential answers
to a question. Jijkoun et al. [11] experimentally proved that
a linguistically deeper method for factoid QA, based on a
small number of patterns, including syntactic relations, out-
performs the traditional surface text pattern-based methods.
Our work can be viewed as a new way of using NLP tech-
niques to support question answering in an IR system that
is more robust than the regular question answering meth-
ods in the sense that automatically generated questions can
always be answered.

An important aspect of any information access system is
effective presentation of retrieval results. Hearst [8] provides
an extensive overview of research efforts over the past several
decades that aimed at improving the usability of search. The
various alternatives to traditional presentation of search re-
sults can be classified into three major categories: clustering
[9] [22] [1], summarization [13] and visualization. The infor-
mation retrieval community has for a long time explored a
number of graphical visualization techniques as an alterna-
tive to the ranked list presentation of search results. Fowler
et al. [5] combined visual representations of queries, re-
trieved documents, associative thesaurus and a network of
inter-document similarities into one graphical retrieval en-
vironment. Chalmers et al. [3] proposed to represent bib-
liography articles as particles in a 3-dimensional space and
apply the potential fields modeling equations from theoreti-
cal physics to represent the relationships between the articles
by their relative spatial position. InfoCrystal [19] is a visual
query language that allows the users to graphically formulate
arbitrarily complex boolean and vector-space queries by or-
ganizing the graphical query building blocks into hierarchies.
Leuski et al. [14] integrated the ranked list representation
and clustering of the retrieved documents into a visual en-
vironment for interactive relevance feedback. As a new way
to present search results, our work enables the users to navi-
gate directly into the answers they are searching for without
needing to read the documents.

In the following sections, we present the general idea be-
hind the question-guided retrieval process and examine its
each individual component in detail.

3. QUESTION-GUIDED SEARCH

The idea of question-guided search comes naturally from
the fact that a search for information is often motivated by
the need for answering a question. Asking a well-formulated
question is the fastest and the most natural way to express
the search goal. However, the current search technologies
cannot fully support a search interface, which is based en-
tirely on free natural language question queries. Moreover,
search engine users have already got used to the keyword-
based search paradigm. In this work, we propose a method
to augment the standard ranked list presentation of search
results with a question based interface to refine initially im-
precise queries.

A typical scenario for question-guided search is as follows.
After a user types in initial keyword query, the automatically
generated clarification questions can be presented next to

the traditional ranked list of documents or any other search
result presentation interface, should the system decide that
a query requires further specification. Alternatively, users
may press a button (e.g., “Guide Me”) and see the list of
questions any time they want. In general, we envision that
question-guided query refinement is likely to be very useful
for exploratory search, especially for difficult, imprecise or
ambiguous queries.

Clarification questions can be short (more general) or long
(more specific) and should ideally be about different aspects
of the query topic. Similar to documents in the classic rel-
evance feedback scenario, questions place the query terms
in a specific context, which may help the users find relevant
information or initiate exploration of other topics. However,
unlike the full-sized documents, questions are much shorter
and hence require less time and effort from the users for read-
ing and relevance judgment. In addition to questions, users
may also be presented with short answers to them, when
they point to a particular question. Users can also click on
the question and be redirected to the document, containing
the answer, for further information. In this sense, questions
can be considered as shortcuts to specific answers.

We also believe that questions can more naturally engage
the users into a relevance feedback cycle. By clicking on
the questions, users indicate their interest in a particular
aspect of the query topic. Therefore, based on that signal,
a search system can present the next set of questions and
search results, by adding the terms in the clicked question
to the current query to improve results. Although question-
guided search can be used to supplement the results of any
query, it may not be equally effective for all types of queries.
Short, under-specified queries are the best candidates for
refinement through questions. Since question generation al-
gorithm is based on capturing syntactic relations between
the terms, queries, containing named entities are well-suited
for refinement through questions as well, since refining ques-
tions will allow to explore potential relations of the named
entities in a query with other named entities in a corpus.
Overall, question-guided search is a novel way of applying
natural language processing methods to improve the usabil-
ity of search. It seamlessly integrates lightweight search re-
sults navigation and contextual interactive relevance feed-
back into one retrieval framework.

4. IMPLEMENTATION

In this section, we demonstrate how the idea of natu-
ral language question-guided retrieval process can be im-
plemented in a search engine. In order to experimentally
evaluate the proposed idea, we have built a prototype of
a QUestion-guided Search Engine, which we called QUSE.
In the following sections, we consecutively focus on each
individual component of the retrieval process: indexing, re-
trieval, ranking and feedback. In Section 4.1, we begin with
a description of how dependency parsers can be used to
index the occurrences of syntactic patterns, which can be
later transformed into questions. In Section 4.3, we describe
the structure of the index, used in QUSE. Question ranking
is discussed in Section 4.4. And, finally, we overview the
question-based relevance feedback in Section 4.6.

4.1 Parsing and question generation

Due to the fact that information contained in a sentence
is represented not only by its basic lexical units (words), but

also by syntactic relations between them, any natural lan-
guage sentence can be phrased in multiple ways, even if the
meaning conveyed by all the variants is identical. According
to the linguistic theory of dependency grammars [16], any
sentence can be represented as a set of dependency relations,
which form a tree structure, usually called a dependency
tree. A dependency relationship is an asymmetric binary
relationship between a word, called the head (or governor,
parent), and another word called the modifier (or depen-
dent, daughter). Each term in a sentence can have several
modifiers, but can modify at most one other term. The
root of a dependency tree does not modify any other words.
Verbs cannot modify any other constituents and, thus, are
always the roots of dependency trees. For example, the de-
pendency structure of the sentence “John found a solution
to the problem” is shown in Figure 1.

_ obj pcomp
subj det mod det

& ; ¥\
John found a solution to the problem

Figure 1: Example of a dependency tree

In the example sentence in Figure 1, there are six pairs
of dependency relationships, depicted by the arrows from
heads to modifiers. Each edge is labeled by the syntactic
role of a modifier. For example, the label “subj” means that
the modifier in this relation is the subject of a sentence.

In order to convert the sentences in a document collection
into dependency trees, we used Minipar [15], a broad cov-
erage dependency parser. Given an input sentence, Minipar
returns its dependency tree, in which the nodes correspond
to the terms in the sentence along with the syntactic and
semantic labels assigned to them, and the edges represent
the dependency relationships between the terms. Minipar
also classifies proper nouns into semantic categories (names
of people, organizations, geographical locations, titles, cur-
rencies), based on its internal dictionary.

If we consider only syntactic and semantic labels of the
nodes in a dependency tree, disregarding the specific terms
corresponding to the nodes, we will get a generalized de-
pendency tree or syntactic pattern. Obviously, a syntactic
pattern is a compressed representation of all dependency
trees with the same structure. We will refer to the nodes of
a syntactic pattern as slots. During indexing, slots are filled
with the actual words from a matching sentence. When the
semantic role of a constituent is important, it is specified
after the syntactic label of a node. For example, node 1 of
the generalized tree in Figure 2 has the label “subj:person”,
which means that a parse tree or subtree can match this
particular pattern, only if there is a node at that specific
position, which is syntactically labeled as the subject of a
sentence and semantically labeled as a proper name, desig-
nating a person.

Dependency trees can be used to convert any nomina-
tive sentence (or part of it) into a question. The transfor-
mation of a nominative sentence into a question involves
changes only to its syntactic structure, without any signif-
icant changes to its lexical content. The general idea be-
hind the question generation algorithm is that we can in-
dex the instances of syntactic patterns in a document col-
lection along with the terms filling the slots of these pat-
terns and convert those instances into questions, according

1

5 Y

Figure 2: Compressed dependency tree (syntactic

pattern)

to the question generation templates. The algorithm to con-
vert sentences into questions is illustrated with the following
example sentence: “John went to school in Massachusetts”,
the dependency tree of which is shown in Figure 3.

subj mod pcomp-n mod pcomp-n

NN N
John went to school in Massachusetts

Figure 3: Dependency tree of an example sentence

In particular, we can manually define the following ques-
tion templates for the syntactic pattern in Figure 2:

Where did {1:stem} {0:stem} {2:term} {3:term}?
Who {0:term} {2:term} {3:term} {4:term} {5:stem}?

“Term” in the slot description of a question template means
that when the actual question is generated from this tem-
plate, the original form of the word from the corresponding
slot of a syntactic pattern instance is used. “Stem” means
that a morphologically normalized version of a word is used.
Given our example sentence “John went to school in Mas-
sachusetts”, which matches the pattern in Figure 2, the fol-
lowing questions can be generated from the question tem-
plates above:

Where did John go to school?
Who went to school in Massachusetts?

Examples of other patterns, used in QUSE, along with the
sample sentences, matching each of them, are shown in Ta-
ble 1. Terms, filling the slots of pattern instances, are high-
lighted with numbered under-braces. Efficient algorithms
for recognition of syntactic patterns are discussed in detail
in [6].

4.2 Formal definition

Let D = {d1,dz,...,dn} be a collection of n documents,
composed from a set of k terms 7 = {t1,...,%x} and their
stems T/ = {t1/,...,txl}.

DEFINITION 1. SLOT: given a set of syntactic labels L
and a set of semantic roles R, a set of slots S is a subset of
L x R. A slot of a syntactic pattern is a relation (I,7) € S,
where l € L and r € R.

Slots are parts of both the patterns and their instances. In
the patterns, slots specify what kind of lexemes can match
the pattern. In the instances, slots store the actual con-
stituents of matching sentences and their stems.

DEFINITION 2. SYNTACTICO-SEMANTIC PATTERN P defines
a structure on a subset of a set of slots S, given the relation
of syntactic dependency. In other words, a syntactic pattern
is a set of the ordered pairs of slots:

P = {(Si,Sj), ey (Sk,Sm)}

such that in each pair (ss, s;), si is a head of syntactic de-
pendency relationship and s; is a modifier.

Let P = {P1, P2,...,Pu} be a collection of M syntactic
patterns.

DEFINITION 3. An INSTANCE OF A SYNTACTIC PATTERN
I is a mapping T xT1 — S, where S is a set of slots belonging
to some pattern P € P.

An instance of a syntactic pattern occurs when a sentence
in the corpus matches one of the syntactic patterns. An
instance is stored and represented by pairs of words and
their stems, which are filling the slots of a matching pattern.

DEFINITION 4. CONTEXT OF A PATTERN INSTANCE in-
cludes the sentence, containing a pattern instance, and the
sentences immediately before and immediately after it. The
context of a sentence is saved to be later shown as an answer
to the question generated from an instance.

The purpose of the context is to provide a short answer
to the automatically generated question.

DEFINITION 5. QUESTION TEMPLATE is a subset of the
set of ordered slots S of a syntactic pattern P € P, per-
turbed and mized with other terms in such a way that, when
instantiated from an instance of a pattern, it conveys the
semantics of a question.

4.3 Indexing

In question-guided search, the purpose of the index is to
store the instances of syntactic patterns. The nature of
syntactic patterns allows to use relational tables for storing
them in the index. The most important parts of the index,
used for question generation are the following relations:

e Dictionary of terms and stems V (id, term): id - the
ID of a term or a stem; term - term or stem itself;

e Documents in the repository D(id, wcount): id - the
ID of a document; wcount - number of words in a
document

e Instances of syntactic patterns:
1(3id, did, sid, pid, slid, tid, stid)

where iid is the ID of an instance; did is the ID of
the document, where an instance occurred; sid is the
ID of a sentence in the document, where an instance
occurred; pid is the ID of the pattern, corresponding
to an instance; slid is the number of the slot, which
the term and its stem are filling; tid is the ID of the
term, filling the slot of a pattern instance; stid is the
ID of the stem, filling the slot of a pattern instance.

Syntactic Patterns

Matching Sentences

1.{1:s(person)}«4{0:i}»{2:mod}»{3:pcomp-
n(location)}»{4:mod}»{5:pcomp-n(date)}

Wilsonlived in Columbia, SouthCarolina, the state capital,
| M\/_/\ o

1 0 2 3
from 1870 — 1874, where his father was professor at the
N~ — —

4 5
Columbia Theological Seminary.

2.{1:s(person)}«{0:i}»{2:0bj(person)}»{3:mod}»{4:pcomp-
n(location)}»{5:mod}»{6:pcomp-n(date)}

In 1764, Adams married Abigail Smith at Weymouth,
SN N——— N—— ~~

5 6 1 0 2 3 4
Massachusetts.

4

3.{1:s(person)}«4{0:i}»{2:0bj}»{3:mod}»{4:pcomp-
n(location)}

Kennedy had near — legendary status in Ireland, as the first
N A N N N

1 0 2 3 4
person of Irish heritage to have a position of world power.

4.{1:s(person) } 4{0:i}»{2:pred}»{3:mod}»{4:pcomp-
n(person)}

Voight is thefather of actress Angelina Jolie (Angelina Jolie

\ SN~ N — \ ~ N)
1 0 2 3 4

Voight is her birthname) and actor James Haven.

5.{1:s(person)}4{0:i}»{2:pred}»{3:mod}»{4:pcomp-
n(location)}

President Kennedy was assassinated in Dallas, Texas at 12:30
N~ ~~

0 2 3 1
p.-m.

6.{1:s(location)} 4{0:i}»{2:pred}»{3:mod}»{4:pcomp-
n(location)}

Washington, D.C., formally the District of Columbia and com-
~—

N—————

1
monly referred to as Washington, the District, or simply

D.C., is thecapital of the United States, founded on July
(S —_—— ———
2 3 4

0
16, 1790.

Table 1: Examples of syntactic patterns and sentences matching them

4.4 Question ranking

Similar to the traditional document-based retrieval model,
the goal of question ranking methods is to determine and
use as many useful heuristics (features) as possible to bring
potentially interesting and relevant questions up to the top
of the list of clarification questions, returned for a keyword
query. Our approach to question ranking is based on deter-
mining the position of a newly added question in the ranked
list, according to several heuristics, numerically expressing
the relative interestingness and relevance of questions.

Formally, given a set H = {hi,h2,...,hn} of n rank-
ing heuristics (features), where each heuristic is a function
h : © — R, mapping questions in the set © into the real num-

in the query ¢ and the slots of the pattern instance I, from
which the question § was generated. The intuition behind
this heuristic is that questions generated from instances that
match more query terms are more specific, and, thus, are
more aggressively guiding the users towards their search
goals.

DS: ds(6, g, d), the retrieval score of the query g with respect
to the document d that contains an instance of the pattern,
from which the question é was generated. This heuristic al-
lows to use the scores of traditional retrieval models (vector
space, probabilistic or language modeling based) for ques-
tion ranking. In our implementation, we used the popular
Okapi/BM25 retrieval formula [18]:

bers (feature values), and the two questions 61 = (h1(01),...,hn(d1))

and 02 = (h1(02),...,hn(d2)), represented as n-tuples of fea-
ture values, a non-parametric question ranking function r is
a binary function: ® x © — {0,1} on question pairs, such
that, if 7(d1,02) = 1, then the question §; should be ranked
above 02 or, i.e., question J; is more relevant to the query
than the question d2, or §; > J2.

Therefore, the ranking procedure is similar to the inser-
tion sorting algorithm, where each new question is compared
with the questions that are already in the list until a less
relevant question is found or the end of the list has been
reached. When such a question is found, a new question is
inserted before it. It is important to note that, in such a
setting, the order, in which the heuristics are applied, deter-
mines their relative importance for ranking. We applied the
following ranking heuristics in the order, in which they are
presented below:

QT: qt(d,q), the number of query terms that occur both
in the query g and the question J, generated from it. The
motivation behind this heuristic is that the questions match-
ing more query terms are potentially more relevant to the
information need.

PM: pm(4,q, I), the number of query terms that occur both

N—df+0.5 (k14+1)tf
s(q,d) 2ieq.n M TFios A Y(EEn T sy,
(kz+1)gtf
k3+qtf

where N is the total number of documents in the collection;
df is the number of documents that contain a query term;
tf is the term’s frequency in a document; gtf is the term’s
frequency in a query; dl is the document’s length; avdl is
the average length of a document in the collection.

We will illustrate our non-parametric approach to ques-
tion ranking with the following example. Suppose a user
submits a query ¢ = {t1,t2,¢3}, which matches three pat-
tern instances (query terms that are matching the slots of
an instance are given in brackets for each instance) in two
documents, such that the instances I; and Iz occur in the
document d; and the instance I3 occurs in the document
dz. The retrieval score of the document d2 with respect to
the query ¢ is greater than the score of the document di,
ds(d,q,d2) > ds(d,q,d1). Six questions, which are summa-
rized in Table 2, were generated from the instances I, Iz
and I3. The query terms, contained in each question, are
given in braces after each question.

The final ranking of the sample questions in Table 2 by

documents | instances | questions
01(t1,t2,t3)
Lifti, t2,t3] [02(t2)
dy 53Et2,)t3)
04(t3
12[t17t3] 65(t1,t3)
da I3[ta] 06 (t2)

Table 2: Matching documents, instances and gener-
ated questions for a sample query

applying the non-parametric ranking heuristics

H = {qt(5,q),pm(d,q,I),ds(d,q,d))}

is shown in Table 3.

qt | pm ds
1. 51 3 3 S(dl)
2. 53 2 3 S(dl)
3. 65 2 2 S(dl)
5. 52 1 3 S(dl)
6. 54 1 2 S(dl)
4. 66 1 1 S(dg)

Table 3: Non-parametric ranking of questions for a
sample query

4.5 Question generation

In this section, we present an algorithm for generating a
ranked list of clarification questions for keyword queries. Let
7 be a set of instances:

T = {{(tr1,t11?), .., (bray tri) o oo oy, {(Em1, tma?), o ooy (bonts tot?) }}

of m syntactic patterns P:

7Sml)}

obtained after indexing a document collection. Suppose a
user poses an n-term keyword query q = {t1,t2,...,tn}.
Let 7(d:, ;) be a ranking function defined on a set of ranking
heuristics:

73 = {(811,812,. . ~751i)7 ey (Sml,smg,. ..

H= {qt(67 Q)vpm((sv q, [)7 dS((s, q, d)}

The algorithm to generate a list of clarification questions ©
ranked according to the ranking function r(d;,d;) is shown
in Algorithm 1.

Algorithm 1 operates as follows. First, a set of pattern
instances Z/ with at least one query term is obtained by
querying the index (line 1). Next, for each instance in Z/,
the corresponding pattern and the document, where the pat-
tern instance occurred, are obtained (lines 3 and 4, respec-
tively). Templates of the questions, which are focused on
the query terms and include other slots of the instance, are
obtained in line 5. Next, the slots of the question templates
are filled with the terms from the corresponding slots of the
pattern instance (lines 6 and 7). Once a question is gener-
ated from the template, the values of the ranking features
are calculated in lines 9-11: the number of query terms, oc-
curring in the generated question, is obtained in line 9; the
number of query terms occurring in the slots of the pat-
tern instance, from which the question § was generated, is
obtained in line 10; the score of a document containing the
pattern instance I, from which the question § was generated,
is obtained in line 11. Finally, the current list of questions is

Algorithm 1 Algorithm to generate a ranked list of clarifi-
cation questions © for a keyword query ¢

Require: Keyword query, ¢ = {t1,t2,...,tn}
Require: Set of m syntactic patterns, P
Require: Set of [instances of syntactic patterns, Z
Require: Ranking function r(d;,d;)
1: Zr < {VI : 3t,t € Qandt € I}
2: for all I,1 € 71 do
3: P < pattern(I)
4: d <+ document(I)
5. T <« template(q, P,T)
6: fori=0to |T|do
7 0[] + I[i]
8 end for
9: qt(d,q) =16 Ng|
10: pm(d,q,1) = |gN 1]
11: ds(d,q,d) = BM25(d, q)
12: for i =0 to |©| do

13: d; + Oi]

14: if r(6,0;) = 1 then
15: insert(0, 6, 1)

16: end if

17 end for

18: end for

being searched (lines 12-17) for the question, which should
be ranked below the question J, according to the ranking
function (line 14). If such a question is found at position
i, the newly generated question is inserted at this position
(line 15), pushing other questions towards the end of the
list.

4.6 Interactive feedback

Our method for automatic question generation provides a
natural way for implicit relevance feedback. Indeed, when a
question is clicked, it can be assumed that a user is inter-
ested in this question. Suppose a user submits a query: g =
{ti,...,tj,tk,...,tn} and, after viewing the ranked list of
questions O, clicks on the question q(t;, tk, ti, tm), which was
generated from the instance I = {tp, ..., t;,tk,tr, tm, ..., tq},
I € Z. The key idea for question-based relevance feedback
is that when a user clicks on the question, containing non-
query terms, a system can interpret this action as an indica-
tion of the direction of interest, and all the non-query terms
in the question can then be added to the original query to
enrich the representation of information need. Specifically,
the original query can be augmented with the terms from
other slots of the same instance of a syntactic pattern that
was matched with the original query. Formally, a new query
is ¢/ = qU f, where f = I — 1IN g; for the example above,
g =A{ti,.. . tj te,. .., tn} U{tp,...,tq}

For example, suppose a user submits a query containing
a person’s name and clicks on the question, generated from
the pattern instance, involving a location and a date. Both
the location and the date can now be added to the orig-
inal query. The new query can then be re-submitted to
the search system to generate an updated question list and
search results, achieving the effect of feedback.

S. EXPERIMENTS

In this section, we present the results of an experimental
evaluation of a prototype search system with the question-

guided functionality (i.e., QUSE) by a group of users. The
evaluation is aimed at demonstrating the added value of the
question-guided search process from the two major perspec-
tives: easier and faster navigation in the search results and
interactive feedback. Within the first perspective, the focus
is on the quality of question generation (automatically gener-
ated questions should be grammatically correct) and ranking
(relevant and interesting question should be presented first).
The second perspective is related to how natural, interesting
and interactive the question feedback is for the users (gener-
ated questions should encourage further exploration of the
query topic).

5.1 Dataset and queries

We crawled, preprocessed and indexed a subset of Wikipedia,

consisting of 3000 most viewed articles in 2009, combined
with the biographic articles about the famous Americans *.
Such composition of the test collection allows the users to
pose a variety of interesting exploratory queries. The test
collection includes 19547 articles and its total size is around
300 megabytes. The indexer was configured to recognize
and index the occurrences of 32 different syntactic patterns,
some of which are presented in Table 1.

We designed a special evaluation interface for the system
and opened it to the users for a week. The users, who par-
ticipated in the evaluation, were a group of 20 engineering
graduate students. We allowed the users to select the queries
from a list of predefined queries or type their own queries di-
rectly into the search box. After submitting their own query
or clicking on a link for a predefined one, the users were for-
warded to a page with search results, which were organized
into question-answer pairs. For each query, a maximum of
30 top-ranked questions, along with the answers, have been
presented for evaluation. A snapshot of the sample result
page is shown in Figure 4.

Users were asked to provide their judgments regarding
the well-formedness (column "W’ in Figure 4), interesting-
ness (column T’ in Figure 4) and relevance (column 'R’ in
Figure 4) of each question, by putting a check mark into the
corresponding check box. We defined a well-formed question
as a question, which is grammatically correct and meaning-
ful to the user; an interesting question as a question, which is
either unexpected or about some fact not previously known
by the user, or if it generates interest in further exploration
of the question topic; and a relevant question as a question
relevant to the topic of a query. We also explicitly clarified
that some questions may be interesting, but not necessarily
relevant, as well as some relevant questions may not nec-
essarily be interesting. For example, if a user submits the
query “clinton” and is willing to find some information about
Bill Clinton, questions about Hillary Clinton are not rele-
vant. However, among the questions about Hillary Clinton,
there can still be questions interesting to the user.

The ’Answer’ column in Figure 4 was intended to help the
users judge the interestingness and, especially, the relevance
of questions. Well-formedness of a question is not related
to its interestingness or relevance. A question can be well-
formed, even if it is not interesting or relevant. Note that the
questions in Figure 4 are presented as hyperlinks, which may
be clicked on, should the user be interested in exploring the
topic of the clicked question. After clicking on a question,

! http://en.wikipedia.org/wiki/Category:Lists_of_people_by_U.S.
_state

the user is presented with another ranked list of feedback
question-answer pairs, generated by issuing a reformulated
(feedback) query. A maximum of 10 feedback questions have
been presented for evaluation during each feedback cycle.

5.2 Judgments

After running the system for a week, we collected the user
judgments of 2895 questions generated for 184 queries (63
non-feedback queries and 121 feedback ones). In order to
get a more detailed picture of how the proposed retrieval
framework performs on different types of information needs,
we manually classified the collected queries into the three
groups, which are listed below along with some sample real
queries:

e SQ (short queries): short (one term only), underspec-
ified and potentially ambiguous queries: e.g., “ford”,
“paris”, “illinois”;

e NQ (normal queries): well-formed, generally unam-
biguous, exploratory queries: “michael jackson”, “bill
gates”;

e LQ (long queries): long (three or more terms), very
specific queries: “barry bonds babe ruth record”, “bush
gulf war”;

e FB (feedback queries): queries, generated by the sys-
tem, when one of the questions was clicked: “cher david
letterman return”, “diagnose disease reagan ronald”.

The aggregated statistics of user judgments with respect
to the absolute number (upper half of each cell) and the rela-
tive percentage (lower part of each cell) of clicked (C), well-
formed (W), interesting (I), and relevant (R) questions to
the total number (T) of questions, generated for the queries
of each type, are shown in Table 4. All queries, regardless
of the type, are designated as ALL.

c W T R T
19 232 23 135 310
SQ [613% [7484% | 41.29% | 43.55% || 100%
99 940 121 606 || 1105
NQ =96% [85.00% | 38.1% | 54.84% || 100%
i1 216 122 85 270
LQ 57% [80.0% | 45.19% | 31.48% || 100%
0 087 700 163 | 1210
FB —50% [81.57% | 58.6% | 38.26% || 100%
ALL | 120 | 2375 | 1380 | 1289 | 2895

4.45% | 82.03% | 47.67% | 44.52% || 100%

Table 4: User judgments for different query types

There are several important conclusions, which could be
made based on the analysis of Table 4. First, questions cor-
responding to the feedback queries have the largest propor-
tion of interesting questions. This clearly shows the benefit
of the question-based feedback strategy. Second, the over-
all question click-through rate greater than 3.33% indicates
that the users clicked on at least one of the 30 questions pre-
sented for each non-feedback query. Third, relevance of the
questions varies across different query types and is the high-
est for normal queries. Therefore, unambiguous queries gen-
erate relatively more relevant questions. The low precision
of questions, generated by the long and feedback queries,

W | I [R Did you mean? Answer

She was the first First Lady to hold a post-graduate degree and to
have her own professional career up to the time of entering the
White House.In January 1993, Bill Clinton appointed Hillary
Clinton to head and be the chairwoman of the Task Force
on National Health Care Reform, hoping to replicate the
success she had in leading the effort for Arkansas
education reform. The recommendation of the task force became
L3 known as the Clinton health care plan, a comprehensive proposal
that would require employers to provide health coverage to their
employees through individual health maintenance organizations.

His policies, on issues such as the North American Free Trade
Agreement and welfare reform, have been described as
centrist.Bill Clinton was born William Jefferson Blythe III in
Hope, Arkansas. His father, William Jefferson Blythe, Jr., was a
traveling salesman who died in an automobile accident three
months before Bill was born.

What did bill clinton do to hillary clinton?

What place was bill clinton iii born?

In his inaugural address he declared:Clinton signed the Brady
Bill into law on November 30, 1993, which imposed a
five-day waiting period on handgun purchases. He also
expanded the Earned Income Tax Credit, a subsidy for low income
workers.

What did clinton do to brady bill?

He has since recovered.On May 1, 1988, Bill Clinton was
inducted into the DeMolay International Hall of Fame. On
September 9, 2008, Bill Clinton was named as the next chairman of
the National Constitution Center in Philadelphia, Pennsylvania.

Where was bill clinton inducted?

On September 9, 2008, Bill Clinton was named as the next chairman
of the National Constitution Center in Philadelphia,
Pennsylvania.On September 9, 2008, Bill Clinton was named
as the next chairman of the National Constitution Center
in Philadelphia, Pennsylvania. His term began January 1, 2009

What was bill clinton named as?

Figure 4: Fragment of a question-answers list for the query “bill clinton”

can be explained by the more specific information need cor-
responding to those types of queries, and hence a smaller
subset of potentially relevant questions/answers. Ambigu-
ous queries naturally result in questions with lower precision.

5.3.2 Evaluation of ranking

In this section, we present the results of an experimen-
tal evaluation of different question ranking strategies de-
scribed in Section 4.4 to determine the best performing non-

Finally, the well-formedness of questions is independent of
the query type and is about 80% across all query types. Af-
ter taking a high-level look at the initial user judgments, we
are now ready to move on to a more detailed analysis of all
components of the question-guided retrieval process.

5.3 Ranking and feedback

5.3.1 Metrics

Due to the fact that a set of questions, which can be po-
tentially returned for a query, can be much larger than a set
of documents, accurate ranking of questions in the question-
guided search framework is very important. Since there may
be many relevant questions and their usefulness to the users
may vary, we distinguish different levels of usefulness of a
question and use the Normalized Discounted Cumulative
Gain or nDCG [10] to measure the quality of a ranked list
of questions. The DCG at the i-th question is computed as:

G(i), ifi=1

. G(1
DCG(i —1) + iy

DCG(i) =

otherwise

where G(7) is the grade of the i-th question §; in the ranked
list, which is computed as follows:

3 if §; is both interesting and relevant
2 if §; is just relevant

Gi) = 1if §; is just interesting
0 if §; is neither interesting, nor relevant
Given a DCG vector V = (vi,v2,...,vs) computed for

a list of k£ questions © that are generated by some ranking
method and the DCG vector I = (i1, 42,...,%x), which cor-
responds to the ideal ranking of the same question list ©, a
normalized DCG vector is nDCG = (v1 /i1, v2 /%2, ..., Uk /ik).

parametric ranking function. First, we started with the
ranking functions that include only one ranking heuristic
qt, pm, ds at a time. Then, we kept adding additional
heuristics to the best performing ranking function at each
step to determine the best performing combination of rank-
ing heuristics. The relative performance of different ranking
functions is summarized in Table 5
As follows from Table 5, the best performing non-parametric

question ranking function is r(pm,ds,qt). This indicates
that all three ranking heuristics are useful. The sequence
of application of ranking heuristics in the best-performing
ranking function also suggests that the questions, gener-
ated from the more specific patterns (those that match more
query terms), should be ranked higher. This can be ex-
plained by fact that the users prefer more specific questions
to the broader ones.

5.3.3 Evaluation of feedback

One of the key benefits of the question-based retrieval pro-
cess is the possibility of contextual query expansion. We
evaluated the effectiveness of question-based feedback by
comparing precision@n (Figure 5) and nDCG@n (Figure 6)
across all feedback and non-feedback questions. Non-feedback
questions were presented after the users submitted their
initial queries or clicked on the predefined query. Feed-
back questions were generated and presented after the users
clicked on one of the initial questions and the updated ini-
tial query has been re-submitted to the system. Since the
updated query includes the original query terms, the clicked
question may appear in the feedback questions, however it
may not necessarily be ranked high enough to be presented
to the users, since the updated query also generates other
questions, which could be ranked higher than the clicked
one.

The steep slope of the precision curve for the feedback

ripm) | r(qt) | r(ds) | r(pm,ds) | r(ds,pm) | r(pm,ds, qt)
MAP 0.8962 | 0.8823 | 0.8889 | 0.9080 0.8920 0.9083
MRR 0.2927 | 0.2895 | 0.2932 | 0.2968 0.2936 0.2969
Avg. NDCG | 0.8765 | 0.8651 | 0.8841 | 0.8907 0.8850 0.8911
Prec@5 0.6435 | 0.6402 | 0.6543 | 0.6620 0.6533 0.6625
Prec@10 0.4755 | 0.4717 | 0.4761 | 0.4804 0.4761 0.4821

Table 5: Performance of different ranking functions

e
J

precision@n

o o
o o

o
~

question position

Figure 5: Precision@n for all feedback and non-
feedback questions

questions in Figure 5 indicates that the question-based feed-
back aggressively refines the information need by bringing
up a small number of both highly relevant and interesting
questions to the top of the question list.

nDCG@n
o
@
o
T
.

question position

Figure 6: nDCG@n for all feedback and non-
feedback questions

Figure 6 further confirms our conclusion that the question-
based feedback effectively improves question ranking by bring-
ing the highly relevant and interesting questions to the first
three positions of the ranked list.

5.4 Detailed analysis

The proposed novel retrieval framework opens up many
interesting opportunities for exploration of user search be-
havior. In this section, we aim to analyze user preferences
regarding different types of questions. In particular, we fo-
cus on the two specific questions:

e is there any relationship between the head word of a
question and user judgments/click-through rate?

Head | Click | Inter | Relev
how 21 215 212
what 43 472 461
who 32 454 390
when 26 180 168
where 7 59 58

Table 6: User behavior with respect to different
question types

e is there any relationship between the length of a ques-
tion and user judgments/click-through rate?

In order to answer the first question, we calculated the break-
down of clicked, interesting, and relevant questions across
the different question types, which is shown in Table 6.
From Table 6, it follows that the users find factual ques-
tions (i.e. the “what” questions) and questions about a per-
son (i.e. the “who” questions) to be more interesting than
questions about time or location. The same applies to click-
throughs, although the difference is less pronounced, which
could be partially explained by the low absolute number of
click-throughs compared to the judgments. In order to an-
swer the second question, in Figure 7 we plotted the distri-
bution of clicked, interesting, and relevant questions across
the questions of different length. From Figure 7, it follows

—e— clicked
—e—interesting| |
—&— relevant

number of questions

10 " 12

6
question length

Figure 7: Distribution of clicked, interesting, and
relevant questions over question lengths

that the users mostly click on the medium length 3,4,5-word
questions. Users also find such medium-length questions to
be more interesting and relevant than others.

6. CONCLUSIONS AND FUTURE WORK

This work proposed a novel idea of question-guided search
process, in which a retrieval system would automatically
generate and present to the users a set of potentially inter-
esting questions, based on the search results of a query. The

generated questions can naturally supplement the standard
search result presentation methods to improve the utility
of search engines in two ways. First, it enables the users
to navigate directly into the answers, contained in search
results, without needing to read the documents, when the
generated questions are relevant to their information need.
Second, in case of imprecise or ambiguous queries, the auto-
matically generated questions can naturally engage the users
into a feedback cycle to refine their information need and
guide them towards their search goals as well as stimulate
new interests for exploratory search. We proposed a suite of
methods for implementing the question-guided search strat-
egy, including the methods for indexing of syntactic pat-
tern instances, generating questions from pattern instances
with question templates and ranking questions with multi-
ple heuristics. We implemented these methods in a proto-
type and evaluated it on a subset of Wikipedia. The exper-
imental results demonstrated that the proposed method for
question-based query refinement allows the users to more
easily navigate in search results and effectively explore the
results space in an interactive and natural way.

We believe that question-guided search is a very promis-
ing novel paradigm of interactive search. Our work is only a
first step to show its feasibility; there are many interesting
directions for future research. First, it would be interesting
to further explore alternative methods for question presen-
tation and ranking; in particular, applying learning to rank
methods to optimize the ranking of questions would be very
interesting. Second, we have only explored question genera-
tion based on manually created templates; it would be inter-
esting to develop techniques for automatic induction of inter-
esting syntactic patterns and question generation templates.
Finally, a question-guided search engine would generate rich
user history, including sequences of questions clicked by the
users; such search log data offers interesting opportunities
for user intent analysis and massive implicit feedback.

7. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant Numbers 11S-0347933,
1IS-0713581, IIS-0713571, and CNS-0834709. We would like
to thank everyone, who participated in the evaluation of
QUSE, as well as the anonymous reviewers for their com-
ments, which helped to improve the quality of this paper.

8. REFERENCES

[1] R. B. Allen, P. Obry, and M. Littman. An interface for
navigating clustered document sets returned by
queries. In Proceedings of the ACM COOCS, pages
166-171, 1993.

[2] A. Bookstein. Information retrieval: A sequential
learning process. Journal of the American Society for
Information Science, 34(5):331-342, 1983.

[3] M. Chalmers and P. Chitson. Bead: Exploration in
informaion visualization. In Proceedings of the ACM
SIGIR, pages 330-337, 1992.

[4] H. Cui, M.-Y. Kan, and T.-S. Chua. Generic soft
pattern models for definitional question answering. In
Proceedings of the ACM SIGIR, pages 384-391, 2005.

[5] R. H. Fowler, W. A. Fowler, and B. A. Wilson.
Integrating query, thesaurus, and documents through

(14]

(15]

(18]

(19]

20]

(21]

a common visual representation. In Proceedings of the
ACM SIGIR, pages 142-151, 1991.

K.-S. Fu and B. K. Bhargava. Tree systems for
syntactic pattern recognition. IEEE Transactions on
Computers, C-23(12):1087-1098, 1973.

M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th
International Conference on Computational
Lingustics, pages 539-545, 1992.

M. A. Hearst. Search User Interfaces. Cambridge
University Press, 2009.

M. A. Hearst and J. O. Pedersen. Reexamining the
cluster hypothesis: Scatter/gather on retrieval results.
In Proceedings of the ACM SIGIR, pages 76-84, 1996.
K. Jarvelin and J. Kekéldinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on
Information Systems, 20(4):422-446, 2002.

V. Jijkoun, M. de Rijke, and J. Mur. Information
extraction for question answering: Improving recall
through syntactic patterns. In Proceedings of the 20th
International Conference on Computational
Linguistics, 2004.

B. Katz and J. Lin. Selectively using relations to
improve precision in question answering. In
Proceedings of the EACL-2003 Workshop on Natural
Language Processing for Question Answering, pages
43-50, 2003.

D. Lawrie, W. B. Croft, and A. Rosenberg. Finding
topic words for hierarchical summarization. In
Proceedings of the ACM SIGIR, pages 349-357, 2001.
A. Leuski and J. Allan. Improving interactive retrieval
by combining ranked lists and clustering. In
Proceedings of the RIAO, pages 665—681, 2000.

D. Lin. Dependency-based evaluation of minipar. In
Proceedings of the Workshop on Evaluation of Parsing
Systems at LREC, 1998.

1. Melcuk. Dependency syntaz: theory and practice.
State University of New York Press, 1987.

A. Pollock and A. Hockley. What’s wrong with
internet searching. In Proceedings of the “Designing
for the Web: Empirical Studies”, 1996.

A. Singhal. Modern information retrieval: A brief
overview. IEEE Data Engineering Bulletin,
24(4):35-43, 2001.

A. Spoerri. Infocrystal: A visual tool for information
retrieval & management. In Proceedings of CIKM,
pages 11-20, 1993.

T. Strzalkowski, J. P. Carballo, and M. Marinescu.
Natural language information retrieval. In Proceedings
of the 3rd Text Retrieval Conference (TREC-3), 1994.
Y.-C. Wang, J. Vandendorpe, and M. Evans.
Relational thesauri in information retrieval. Journal of
the American Society for Information Science,
36(1):15-27, 1985.

O. Zamir and O. Etzioni. Grouper: A dynamic
clustering interface to web search results. In
Proceedings of the WWW, pages 46-54, 1999.

C. Zhai, X. Tong, N. Mili¢-Frayling, and D. A. Evans.
Evaluation of syntactic phrase indexing - clarit nlp
track report. In Proceedings of the 5th Text Retrieval
Conference (TREC-5), 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

