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ABSTRACT
In most existing retrieval models, documents are scored primarily
based on various kinds of term statistics such as within-document
frequencies, inverse document frequencies, and document lengths.
Intuitively, the proximity of matched query terms in a document
can also be exploited to promote scores of documents in which the
matched query terms are close to each other. Such a proximity
heuristic, however, has been largely under-explored in the litera-
ture; it is unclear how we can model proximity and incorporate
a proximity measure into an existing retrieval model. In this pa-
per, we systematically explore the query term proximity heuristic.
Specifically, we propose and study the effectiveness of five differ-
ent proximity measures, each modeling proximity from a different
perspective. We then design two heuristic constraints and use them
to guide us in incorporating the proposed proximity measures into
an existing retrieval model. Experiments on five standard TREC
test collections show that one of the proposed proximity measures
is indeed highly correlated with document relevance, and by incor-
porating it into the KL-divergence language model and the Okapi
BM25 model, we can significantly improve retrieval performance.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms

Keywords
Proximity, retrieval heuristics

1. INTRODUCTION
One of the most fundamental research questions in information

retrieval is how to operationally define the notion of relevance so
that we can score a document w.r.t. a query appropriately. A dif-
ferent definition generally leads to a different retrieval model. In
the past a few decades, many different retrieval models have been
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proposed and tested, including vector space models [25, 24], clas-
sic probabilistic models [22, 28, 9], and statistical language mod-
els [20, 11, 15, 30, 17, 29, 31, 16, 6].

In most existing retrieval models, documents are scored primar-
ily based on various kinds of term statistics such as within-document
frequencies, inverse document frequencies, and document lengths
[7], but the proximity of matched query terms in a document has
not been exploited. Intuitively, given two documents that match
the same number of query words, we would like to rank the docu-
ment in which all query terms are close to each other above the one
where they are apart from each other. Thus query term proximity
is another potentially useful heuristic that can be incorporated into
a retrieval model.

For example, consider the query “search engine” and the follow-
ing two documents, both matching the two query terms once:

Example 1 Document 1: “... search engine ...”

Example 2 Document 2: “... search .... engine ...”

Intuitively, Document 1 should be ranked higher because its two
query terms are adjacent to each other. In contrast, the two query
terms in Document 2 are far apart, thus their combination does not
necessarily imply the meaning of “search engine”.

Interestingly, while intuitively quite appealing, such a proximity
heuristic has so far been largely under-explored in the literature. In-
deed, although several studies have looked into proximity [13, 14,
1, 10, 5, 21, 3, 2], the results are non-conclusive; it is still unclear
how we should model proximity and how we can incorporate a
proximity measure into an existing retrieval model. The proximity
heuristic has also been indirectly captured in some retrieval mod-
els through using larger indexing units than words that are derived
based on term proximity (e.g., [19]), but these models can only ex-
ploit proximity to a limited extent since they do not measure the
proximity of terms. (See Section 2 for a detailed review of them.)

In this paper, we systematically study the effectiveness of the
query term proximity heuristic through modeling term proximity
directly and incorporating proximity measures into an existing re-
trieval model. We first study how to measure query term proximity
independently of other relevance factors such as Term Frequency
(TF) and Inverse Document Frequency (IDF); this way, we can
isolate the proximity factor and see clearly its impact on model-
ing document relevance. Since it is unclear what is the best way
to measure proximity, we systematically explore several different
measures. They capture query term proximity from different per-
spectives. For example, one such measure (called “minimum cov-
erage”) is the minimum span of text in a document covering all
the query terms at least once. Intuitively, the smaller the minimum
coverage of a document is, the more likely it is relevant. Along



similar lines, we propose four other proximity distance measures:
span, minimum pairwise distance, average pairwise distance, and
maximum pairwise distance.

To assess the potential of these proximity distance measures for
improving a retrieval function, we compute their correlations with
document relevance. The results show that minimum pairwise dis-
tance is more promising than others.

Next, we study how to exploit the proposed proximity distance
measures to improve a retrieval model. Since the existing retrieval
models have captured other retrieval heuristics very well and have
proved to be effective over many different test collections, we study
how to add proximity on top of them rather than develop a com-
pletely new retrieval with proximity heuristics from scratch. Specif-
ically, we would add proximity to an existing retrieval function as a
complementary scoring component to slightly adjust the relevance
score of a document. This way, we can focus on evaluating the
influence of the proximity feature on retrieval performance.

To incorporate a proximity distance measure into an existing re-
trieval function, we first define two heuristic constraints, in a sim-
ilar way as in [7, 8], to capture the desirable properties of the
new retrieval function that we would like to develop. These con-
straints suggest that the contribution of a proximity distance mea-
sure should follow a function of a convex shape. Our final function
therefore uses a popular logarithm function to convert a proxim-
ity distance measure to a proximity feature value, which is then
combined with two existing retrieval functions – the KL-divergence
language model [15] and the Okapi BM25 model [22].

We evaluate our final models on five representative standard TREC
data sets. The results show that the three pairwise distance mea-
sures are all effective for improving retrieval accuracy while the
other two span-based measures are not effective, likely due to the
problem of normalization. In particular, of all the proximity dis-
tance measures, we have found that the minimum pairwise distance
measure is the best and when added on top of the KL-divergence re-
trieval model and the Okapi BM25 retrieval model, it can improve
retrieval performance significantly.

The rest of the paper is organized as follow: We review the re-
lated previous work in Section 2, and report the experiment data
and their statistics in Section 3. In Section 4, we propose and exam-
ine five proximity distance measures. In Section 5, we study how to
incorporate the proximity heuristic into two existing retrieval mod-
els. We report experiment results in Section 6, and finally conclude
our work in Section 7.

2. RELATED WORK
Keen’s studies [13, 14] are among the early efforts to study the

effectiveness of proximity in retrieval systems, in which, a “NEAR”
operator was used to quantify the proximity of query terms. It
has two major deficiencies: First, the experiments were conducted
on very small data sets, thus the conclusions may not generalize
well. Second, it was developed based on the Boolean retrieval
model, which is generally regarded as less effective than the mod-
ern ranking-based full text retrieval models. The work[1] is one of
the follow-up studies also dealing with Boolean queries. The stud-
ies [5] and [10] appear to be the first to evaluate proximity on TREC
data sets. Both of them measure proximity by using a so-called
“span” measure — the text segment containing all query term in-
stances. The evaluation results are not conclusive. We will also
evaluate this span feature in this paper. In addition, we also pro-
pose several other measures that are more effective than the span
measure.

Some researchers studied proximity particularly based on the
BM25 retrieval model [21, 3, 2]. They heuristically added prox-

#document queries #total qrel
AP 164597 51-100 4805

DOE 226087 DOE queries 2047
FR 45820 51 - 100* 502

TREC8 528155 401-450 4728
WEB2g 247491 401-450 2279

Table 1: Experiment data sets. *We remove the queries without
relevant documents in FR collection. Thus, there are only 21
queries left.

imity to the BM25 retrieval function, but their experiments are not
conclusive and they have not reached a robust effective retrieval
function through exploiting proximity. In our paper, we also com-
bine the proximity measures with BM25. Compared with this pre-
vious work, our work is more systematic and results in an effective
retrieval function in which proximity is effectively combined with
other retrieval heuristics.

An indirect way to capture proximity is to use high-order n-
grams as units to represent text. For example, in [26], bigram and
trigram language models are shown to outperform simple unigram
language models. However, query terms are not always adjacent
to each other in documents. For example, if “search” and “engine”
in the example given in Section 1 are separated by only a single
word, a bigram language model would not be able to capture the
proximity. We may attempt to capture such proximity by increas-
ing the length of an n-gram. However, this would increase the size
of the parameter space significantly, making parameter estimation
inaccurate because we often have only an extremely small sample
for parameter estimation, i.e., a document. A more general way to
indirectly capture proximity through using appropriate “matching
units” is Metzler and Croft’s work on term dependency [19]. In
this work, term structures with different levels of proximity can be
defined in a general probabilistic model. Unfortunately, one has to
pre-define the levels of proximity. Moreover, parameter estimation
would be more difficult as we attempt to distinguish proximity at
finer granularity levels. Thus in reality, it is impossible for these
indirect methods of incorporating proximity to capture proximity
in its full spectrum.

Our work is also related to passage retrieval [23, 4, 12, 18, 27],
where documents are often pre-segmented into small passages, which
are then taken as units for retrieval. Since matching a passage im-
plies imposing a proximity constraint on the matched query terms,
passage retrieval can also capture proximity at a coarse granularity
level, though it is clear that proximity can only be captured in a
limited way with this approach.

3. EXPERIMENT DATA
We used several representative standard TREC data sets in our

study 1: AP (Associated Press news 1988-90), DOE (Department
of Energy abstracts), FR (Federal Register), TREC8 (the ad hoc
data used in TREC8), WEB2g (WT2g Web data). They represent
different sizes and genre of text collections. Table 1 shows the
statistics of these data. Throughout this paper, we will use these
five data sets to do data analysis and evaluate proximity models.

4. MEASURING PROXIMITY
Intuitively, we hope to reward a document where the matched

query terms are close to each other. However, the issue is com-
1http://trec.nist.gov/



plicated because a query may have more than two terms and each
term may occur multiple times in a document. In this section, we
propose several proximity measures to capture this notion of close-
ness.

We start with assuming that we can segment a document into
some units (e.g., terms or sentences). Based on a given segmenta-
tion method, we can then measure the length of any text segment
by the number of units in the text segment and measure the distance
between two term occurrences based on the number of units in be-
tween the two occurrences. In this paper, we assume that the unit
for segmentation is a term. However, the proposed measures can
be directly applied to other choices of the unit.

When a document matches two query terms each once, it would
be natural to measure the proximity by the distance between the two
matched query terms. However, in general, a document may match
more than two query terms and each query term may occur multiple
times in the document. A main challenge is thus to construct an
overall proximity distance measure that can account for an arbitrary
number of matched query terms.

We propose two kinds of approaches: (1) Span-based approaches:
We measure the proximity based on the length of a text segment
covering all the query terms. (2) Distance aggregation approaches:
We measure the proximity by aggregating pair-wise distances be-
tween query terms. Relatively speaking, the first kind is more
“global” because it must account for all query terms. In contrast,
the second kind is more “local” because it may be more sensitive
to the distance of an individual pair depending on how aggregation
is done. Below we define five specific proximity distance measures
in these two categories of approaches. We will use the following
short document d as an example to explain our definitions.

d = t1, t2, t1, t3, t5, t4, t2, t3, t4

4.1 Span-based proximity distance measures

Definition 1 (Span) Span [10] is defined as the length of the short-
est document segment that covers all query term occurrences in a
document, including repeated occurrences.

For example, in the short document d, the Span value is 7 for the
query {t1, t2}.

Definition 2 (Min coverage (MinCover)) MinCover is defined as
the length of the shortest document segment that covers each query
term at least once in a document.

In the above example, if the query is {t1, t2}, its MinCover
would be 2, but if the query is {t1, t2, t4}, its MinCover would be
5 (the length of the segment from the second position to the sixth
position).

4.2 Distance aggregation measures
Here we first define a pairwise distance between individual term

occurrences, and then aggregate the pairwise distances to gener-
ate an overall proximity distance value. Specifically, we first pair
up all the unique matched query words and measure their closest
distances in documents. For example, when a query has three dif-
ferent words {t1, t2, t3} and a document matches all the three
words, we can obtain three different pairs of query term combi-
nations: {t1,t2}, {t1, t3}, and {t2, t3}. In the example document
d, the closest distance for all these three pairs is 1 as they have all
occurred next to each other somewhere. We use Dis(t1, t2; D) to
denote the closest distance between the occurrences of term t1 and
term t2 in document D.

We now consider three different aggregation operators (i.e., Min-
imum, Average, and Maximum) and define the following three dis-
tance measures:

Definition 3 (Minimum pair distance (MinDist)) The minimum pair
distance is defined as the smallest distance value of all pairs of
unique matched query terms. Formally,
MinDist = minq1,q2∈Q∩D,q1 6=q2{Dis(q1, q2; D)}.

For example, the MinDist of the example document d for query
Q = {t1, t2, t3} is 1.

Definition 4 (Average pair distance (AveDist)) The average pair
distance is defined as the average distance value of all pairs of
unique matched query terms. Formally,
AveDist = 2

n(n−1)

P

q1,q2∈Q∩D,q1 6=q2
Dis(q1, q2; D), where n

is the number of unique matched query terms in D, and in the sum,
we count Dis(q1, q2; D) and Dis(q2, q1; D) only once.

For example, the AveDist of the example document d for query
Q = {t1, t4, t5} is (1 + 2 + 3)/3 = 2.

Definition 5 (Maximum pair distance (MaxDist)) The maximum
pair distance is defined as the largest distance value of all pairs of
unique matched query terms. Formally,
MaxDist = maxq1,q2∈Q∩D,q1 6=q2{Dis(q1, q2; D)}.

Note that all aggregation operators are defined over the pairwise
distances on the matched query terms. The pairwise distance be-
tween two query terms is always based on their closest positions in
a document. In the case when a document matches only one query
term, MinDist, AveDist, and MaxDist are all defined as the length
of the document.

All five measures can be calculated efficiently. We elaborate the
calculation of MinCover briefly because it is not very straightfor-
ward. Assume that a document matches K unique query terms, and
the total number of occurrences of these K query terms is N . We
can record the positions of these N occurrences in order in the in-
verted index so that we can scan them one by one. While scanning,
we maintain a list of length K, in which we store the last position
of each seen query term. In other words, if a term t occurs twice,
we would record the location of the first occurrence when the scan-
ning hits the first one and update it when we hit the second one.
In each step, we calculate the span solely based on the information
in the list, and finally select the smallest span value we have ever
obtained during the scanning process. Since K is often very small,
the algorithm is close to linear in terms of N .

4.3 Evaluation of proximity distance measures
The five proximity distance measures defined above all capture

proximity of matched query terms intuitively. We now look into the
question whether they can potentially be exploited to improve a re-
trieval model. To answer this question, we examine the correlations
between these measures and the relevance status of documents.

We use the KL-divergence retrieval method [15] to retrieve top
1000 documents for each query, calculate different proximity dis-
tance measures for each document, and then take the average of
these values for relevant and non-relevant documents respectively.
Intuitively, we expect the proximity distance measures on relevant
documents to have smaller values than those on non-relevant docu-
ments since the query terms are expected to be closer to each other
in a relevant document than in a non-relevant document.

We first report the Span and MinCover values in Table 2. In
this table, we separate non-relevance scores and relevant scores in



Span MinCover
non-rel. rel non-rel. rel

AP88-89 354.48 453.92 84.65 93.17
FR88-89 1457.01 5672.11 140.98 439.48
TREC8 505.98 796.82 49.96 51.37
WEB2g 1028.76 3370.65 102.46 150.22

DOE 48.52 73.58 15.81 14.43

Table 2: Global measures on different data sets

Span MinCover
non-rel. rel non-rel. rel

AP88-89 50.78 46.43 30.09 27.63
FR88-89 104.13 150.90 46.38 127.93
TREC8 56.25 57.43 21.92 20.13
WEB2g 108.38 153.48 58.11 56.88

DOE 108.38 153.48 7.288 5.857

Table 3: Normalized global measures on different data sets

two columns. For example, the first number 354.48 means that the
average of “Span” values of all non-relevant documents is 354.48.

Disappointingly, all the results are negative: the proximity dis-
tance values of relevant documents are all much larger than those
of non-relevant documents. This counter-intuition result indicates
that we may have missed important factors in relating proximity to
document relevance. We notice that not all query terms appear in
every document, and also some terms appear more frequently in
one document than in another. When a document has more query
terms, those terms would tend to span widely. Thus, both global
measures (i.e., Span and MinCover) favor documents with fewer
query term occurrences. To correct this bias, we therefore intro-
duce a normalization factor. Specifically, we propose to normalize
Span by dividing it by the total number of occurrences of query
terms in the span segment, and normalize MinCover by dividing it
by the number of unique query terms. We report the results from
the normalized measures in Table 3.

We can make some interesting observations in Table 3. While
Span still shows negative results, MinCover is now indeed slightly
smaller on relevant documents than on non-relevant documents in
most cases, suggesting the existence of weak signals. Even for
Span, we also observe that the normalized version appears to be
less negative than the non-normalized version.

The results about the three “local” measures are shown in Ta-
ble 4.

We can now observe some interesting positive correlations in Ta-
ble 4: While MaxDist results are still negative, both AveDist and
MinDist are indeed positive. In particular, the MinDist measure
has consistently smaller values for relevant documents than non-
relevant ones.

The observations in this section suggest three things: First, nor-
malization is an important factor for “global” measures. Second, a
“local” measure can be expected to perform better than a “global”
measures. In particular, MinDist is likely to be the best measure
among all the five measures. As will be shown later in Section 6,
these predictions are indeed true.

5. PROXIMITY RETRIEVAL MODELS
In this section, we study incorporation of the proposed proximity

distance measures into an existing retrieval model. Since the raw

values of proximity distances are generally not comparable with the
values of a retrieval function, it is non-trivial to find an effective
way of combining them. As we will show in Section 6, simply
adding a good proximity distance measure to a retrieval function
does not necessarily lead to a better retrieval function.

Our idea is to first figure out a way to transform a proximity
distance measure appropriately so that it would make “reasonable”
contributions to retrieval scores. Specifically, given a proximity
distance function δ(Q,D) defined on document D and query Q,
we would like to compute a retrieval score “adjustment factor” (de-
noted as π(Q,D)) based on δ(Q,D), i.e., π(Q,D) = f(δ(Q, D)),
where f is some transformation function possibly with a parame-
ter. In order to obtain some guidance on designing this transfor-
mation function, we follow the axiomatic retrieval framework pro-
posed in [7, 8] and define the following two constraints to help us
design the transformation function:

First, we would like π(Q,D) to positively contribute to the re-
trieval score of a document. We thus define the following basic
proximity heuristic which simply says that a smaller δ(Q,D) im-
plies a larger π(Q, D).
Constraint (proximity heuristic) Let Q be a query and D be a
document in a text collection. Let D′ be a document generated by
switching the positions of two terms in D. If δ(Q,D) > δ(Q,D′),
then π(Q, D) < π(Q, D′).

Second, we would like the contribution from a distance measure
to drop quickly when the distance value is small and become nearly
constant as the distance becomes larger. The rational of this heuris-
tic is the following: small distances between terms often imply
strong semantic associations, thus we should reward cases where
terms are really close to each other; however, when distances are
large, the terms are presumably only loosely associated, thus the
score contribution should not be so sensitive to the difference in
distances as when the distances are small. This heuristic is formally
defined as follows:
Constraint (Convex curve) Let Q be a query and D1, D2, and
D3 be three documents that only differ in their term orders, but
would otherwise be identical. That is, they have the same bag
of terms, but the order of terms is different in each document. If
δ(Q, D1) = δ(Q,D2) − 1 and δ(Q, D2) = δ(Q,D3) − 1, then
π(Q,D1) − π(Q,D2) > π(Q, D2) − π(Q,D3).

These two constraints together suggest a convex curve for π as
shown in Figure 1. Its first derivative should be negative and its
second derivative should be positive.

 0
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Figure 1: Ideal shape of the proximity transformation function

Such a curve can be obtained using the following function:

π(Q,D) = log(α + exp(−δ(Q,D))).



MinDist AveDist MaxDist
non-rel. rel non-rel. rel non-rel. rel

AP88-89 30.64 16.18 52.55 43.30 82.78 89.41
FR88-89 39.83 39.35 72.07 148.82 133.62 415.02
TREC8 31.77 19.15 39.33 32.25 48.91 49.92
WEB2g 67.91 61.20 82.73 96.65 100.42 146.44

DOE 11.68 7.66 13.38 10.57 15.31 13.97

Table 4: Local measures on different data sets

In this formula, we use exp(−δ(Q,D)) to map the distance val-
ues to the [0, 1] range, and then take a logarithm transformation to
force the curve to satisfy the two constraints above. α is a parame-
ter introduced here to allow for certain variations.

To test whether π(Q,D) can indeed improve a retrieval function,
we combine it with the following two representative state-of-the-art
retrieval formulas (i.e., the KL-divergence language model [15] and
the Okapi BM25 model [22]):

KL(Q, D) =
X

w∈q∩d

c(w, q) · ln(1 +
c(w, d)

µ · p(w|C)
)

+ |q| · ln
µ

|d| + µ
(1)

BM25(Q, D) =
X

w∈q,∩d

„

ln
N − df(w) + 0.5

df(w) + 0.5

×
(k1 + 1) × c(w, d)

k1((1 − b) + b |d|
avdl

) + c(w, d)

×
(k3 + 1) × c(w, q)

k3 + c(w, q)

«

(2)

and obtain the following proximity-enhanced new retrieval func-
tions:

R1(Q,D) = KL(Q, D) + π(Q,D) (3)
R2(Q,D) = BM25(Q, D) + π(Q,D) (4)

Although our extension of the two formulas is purely heuristic,
we believe that exploring these modifications can shed light on how
to eventually obtain a unified retrieval model with more principled
incorporation of the proximity component. As will be shown in
Section 6, both new formulas outperform the corresponding origi-
nal formulas.

6. EXPERIMENT
We test the proposed proximity retrieval models on the data sets

listed in Section 3. In each experiment, we first use the baseline
model (KL-divergence or Okapi BM25) to retrieve 2,000 docu-
ments for each query, and then use the proximity retrieval model to
re-rank them. The top-ranked 1,000 documents for both the base-
line run and the proximity run are compared in terms of their mean
average precisions (MAP), which we use as our main evaluation
metric.

6.1 Normalization of span-based measures
We first examine the effectiveness of different span-based prox-

imity measures with and without normalization. For both Span and
MinCover, we compare the non-normalized version with the nor-
malized version at different α values. We show some representa-
tive results (Span on DOE and MinCover on WEB2g) in Figure 2.
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Figure 2: Performance with and without normalization

As we expected, normalized Span and MinCover are more stable
and more accurate than their corresponding non-normalized ver-
sions. This suggests that normalization is important for “global”
measures in proximity modeling.

6.2 Best performance
We now turn to the question whether the proximity heuristic can

improve retrieval performance. We report the best retrieval perfor-
mance of all the five proximity measures for both R1 and R2 in Ta-
ble 5. The table has two parts: the upper part is the KL-divergence
model and its R1 variations and the lower part is the Okapi model
and its R2 variations. In each part, the first row shows the retrieval
performance of the original model. We use µ = 2000 [30] in the
KL-divergence language model. The Okapi BM25 has three main
parameters. We set k1 = 1.2 and k3 = 1, 000 as suggested in [22]
and tune b to be optimal. The rest rows of the table are the best
performance of all proximity models achieved by varying α in the
range [0, 1]. For the R2 variations, we fix b to the optimal value
tuned based on the original (baseline) Okapi model so that we only
vary one parameter — α.



method/data AP DOE FR TREC8 WEB2g
KL 0.2220 0.1803 0.2442 0.2509 0.3008

Span 0.2203 0.1717 0.2436 0.2511 0.2992
R1 MinCover 0.2200 0.1685 0.2659 0.2455 0.2947

MinDist 0.2265* 0.2018* 0.2718 0.2573* 0.3276*
AveDist 0.2244 0.1922 0.2683 0.2538 0.3079
MaxDist 0.2247 0.1913 0.2687 0.2536 0.2966
BM25 0.2302 0.1840 0.3089 0.2512 0.3094
Span 0.2292 0.1808 0.3101 0.2468 0.3073

R2 MinCover 0.2260 0.1815 0.2881 0.2260 0.2966
MinDist 0.2368* 0.2023* 0.3135 0.2585* 0.3395*
AveDist 0.2314 0.1960 0.3115 0.2506 0.3148
MaxDist 0.2323 0.1942 0.3115 0.2492 0.3144

Table 5: The best performance (MAP) of R1 and R2. The highlighted numbers are the best one among all values achieved by the
comparable methods. Wilcoxon sign tests are done on the row of MinDist over the baseline method. * indicates the improvement is
significant at 0.05 level.

method/data AP DOE FR TREC8 WEB2g
KL 0.368 0.260 0.152 0.452 0.446

R1 + MinDist 0.374 0.280 0.138 0.460 0.468
BM25 0.376 0.288 0.147 0.446 0.486

R2 + MinDist 0.418 0.300 0.166 0.456 0.502

Table 6: Pr@10 of the MinDist method over different data sets.

The results are consistent with our previous analysis of corre-
lations: the two “global” measures (i.e., Span and MinCover) are
not effective in general. Indeed, they hurt the performance in most
cases. In contrast, the three “local” measures perform much better.
They outperform the baselines in most experiments. We highlight
the best values in each column in Table 5. It is very clear that the
MinDist distance measure performs the best on every data set.

We do Wilcoxon sign tests on the improvement of MinDist over
the baselines. Out of ten tests on five data collections, eight of them
pass the test at the significant level of 0.05. In particular, the p-
values of the two tests on WEB2g are smaller than 0.0001. We also
observe that the improvement on FR88-89 is insignificant for both
R1 and R2, even though their improvements look substantial. This
may be because FR88-89 only has 21 queries (Table 1. When the
number of sample points is small, a statistical test tends to support
the null hypothesis, since there is insufficient evidence to support
the alternative hypothesis.

We also observe from Table 5 that the improvement is not consis-
tent across different data collections. The improvement appears to
be most substantial on WEB2g and FR. For example, the MinDist
with KL-divergence only improves the MAP value from 0.2220 to
0.2265 on AP, but it can improve MAP from 0.3008 to 0.3276 on
WEB2g and from 0.2442 to 0.2718 on FR. We find that both FR88-
89 and WEB2g have longer documents compared with the other
data sets. Thus our results seem to suggest that proximity is more
useful for collections with long documents. Indeed, because the
query terms tend to spread in a wider range when documents are
long, we may expect proximity measures to be more discrimina-
tive, thus more effective for improving retrieval accuracy.

Since it is not easy to interpret MAP values from a user’s per-
spective, we further report the precision at 10 documents for MinDist
(the best proximity measure) in Table 6, the precision at 0.1 recall
level in Table 7, and the number of retrieved relevant documents at

method/data AP DOE FR WEB2g TREC8
KL 0.440 0.358 0.326 0.500 0.579

R1 + MinDist 0.451 0.423 0.365 0.505 0.596
BM25 0.443 0.374 0.351 0.488 0.539

R2 + MinDist 0.496 0.439 0.449 0.520 0.621

Table 7: Pr@0.1 of the MinDist method over different data sets.

method/data AP DOE FR WEB2g TREC8
KL 3162 1018 242 2841 1860

R1 + MinDist 3162 1018 250 2856 1880
BM25 3181 1044 270 2729 1717

R2 + MinDist 3204 1043 312 2864 1933

Table 8: Retrieved relevant documents of the MinDist method
over different data sets.

the cutoff 1000 (equivalent to recall) in Table 8.
We further compare our results with those from using the Markov

random field (MRF) model proposed in [19], which can indirectly
capture proximity to a certain extent. We set the three parameters
(λT , λO, λU ) in the MRF model to (0.8, 0.1, 0.1), as suggested
in [19]. We compare the MRF results with our R1 + MinDist results
in Table 9. Interestingly, we find both methods perform very simi-
larly on all five data sets, suggesting that a major reason why MRF
performs well may be because it can capture proximity. It would
be interesting to further analyze the connection between these two
different ways of capturing proximity.

6.3 Parameter Sensitivity
The proposed proximity model has one parameter (α). We now

look into the sensitivity of performance to this parameter in all the
methods, especially the MinDist method. We plot the sensitivity
curves of different methods on WEB2g in Figure 3. We see that
“global” distances are all less stable and less accurate than ”local”
distances. This suggests that “local” proximity distances are gener-
ally more effective. Moreover, MinDist is clearly the best.

To better understand parameter sensitivity of MinDist, we further
plot its sensitivity curves on all five data sets in Figure 4. All curves
appear to be stable, and setting α = 0.3 appears to work well for



method/data AP DOE FR TREC8 WEB2g
R1 + MinDist 0.2265 0.2018 0.2718 0.2573 0.3276

MRF 0.2270 0.2057 0.2695 0.2583 0.3284

Table 9: MAP Comparison of R1+MinDist and MRF.
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Figure 3: Sensitivity to parameter α of different methods
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Figure 4: Parameter (α) sensitivity of MinDist over different
data sets

most data sets.

6.4 Effectiveness of the convex decay curve
We defined two constrains and used them to guide our design

of proximity model in Section 5. Here, we want to demonstrate
that this selection is non-trivial. For the purpose of comparison,
we combine the proximity distance measure directly with the KL-
divergence model. We name this new model as R3:

R3 = KL(Q, D) + β × Dir (Q, D)

where β ∈ (−∞,∞) is also a parameter to adjust the balance
between the original KL-divergence score and the proximity score.
Again, we use the best proximity distance measure, MinDist, for
comparison. We do a very large range of exhaustive search for
optimal β values.

The results are shown in Table 10, where we see that R3 can
hardly improve over the baseline, indicating the proximity part does
not function at all. These results show that even if proximity is mea-
sured appropriately, simply adding a proximity value to a retrieval
formula does not always work; we need to add it in a reasonable
way. In our study, we first try to come up with some constraints,

and then use them to guide our design of the function. As is shown
in our experiment results, this axiomatic method [7, 8] can help us
find an effective retrieval function.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we systematically explored the query term proxim-

ity heuristic. We proposed five different proximity distance mea-
sures, each modeling proximity from a different perspective. We
evaluated their correlations with document relevance and found that
the two span-based measures are generally not as well correlated
with relevance as the three aggregated measures based on pairwise
distances, and normalization is critical for span-based measures. In
particular, the MinDist proximity distance measure is found to be
highly correlated with document relevance.

We further define two heuristic constraints and use them to guide
us to incorporate the proposed proximity distance measures into an
existing retrieval model. Experiment results on five representative
TREC test collections show that while span-based proximity mea-
sures cannot improve over the baseline, the pairwise distance-based
measures can improve over the baseline most of the cases. The best
performing measure is MinDist, which can be effectively combined
with KL-divergence language model and the Okapi BM25 model to
improve their retrieval performance significantly.

Our work can be extended in several directions: First, although
we have found empirically that MinDist is the best among the five
proximity measures proposed, further understanding of why it is
the best is needed. This may also help us find even better prox-
imity measures. Second, the transformation function for incorpo-
rating proximity into an existing model is only one of many pos-
sible choices of functions that can satisfy the two constraints. It is
thus very interesting to further explore other possibly more effec-
tive transformation functions. Finally, it would be very interesting
to develop a unified model to combine proximity heuristic and other
retrieval heuristics such as TF-IDF weighting and document length
normalization.
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