
An Empirical Study of Tokenization Strategies for

Biomedical Information Retrieval

Jing Jiang ChengXiang Zhai ∗

Abstract

Due to the great variation of biological names in biomedical text, appropriate tok-

enization is an important preprocessing step for biomedical information retrieval. De-

spite its importance, there has been little study on the evaluation of various tokeniza-

tion strategies for biomedical text. In this work, we conducted a careful, systematic

evaluation of a set of tokenization heuristics on all the available TREC biomedical text

collections for ad hoc document retrieval, using two representative retrieval methods

and a pseudo relevance feedback method. We also studied the effect of stemming and

stop word removal on the retrieval performance. As expected, our experiment results

show that tokenization can significantly affect the retrieval accuracy; appropriate to-

kenization can improve the performance by up to 96%, measured by mean average

precision (MAP). In particular, it is shown that different query types require different

tokenization heuristics, stemming is effective only for certain queries, and stop word

removal in general does not improve the retrieval performance on biomedical text.

Keywords: biomedical information retrieval, tokenization, stemming, stop word.

∗Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave,
Urbana, IL 61801. Email: {jiang4, czhai}@cs.uiuc.edu

1

1 Introduction

Recently, the growing amount of scientific literature in genomics and related biomedical

disciplines has led to an increasing amount of interest in and need for applying information

retrieval as well as other text management techniques to access the biomedical textual data.

The special language usage in biomedical literature, such as the frequent occurrences of gene

symbols and the use of inconsistent lexical variants of the same genes, has raised many new

challenges in the field of biomedical information retrieval.

In previous work on biomedical information retrieval, while many efforts have been put

into query expansion and synonym normalization, little attention has been paid to tokeniza-

tion and other text preprocessing steps that transform the documents and the queries into

the bag-of-word representation. Although tokenization is not a critical step for retrieval in

English text in general domains, it is not a trivial task for languages in special domains

(sometimes referred to as sublanguages), largely due to the domain-specific terminologies.

Information retrieval methods generally rely on term matching. The purpose of tok-

enization is therefore to break down the text into tokens (or terms), which are small units

of meaningful text, such that a match between a token in the query and a token in a docu-

ment can in general increase our confidence that the document is relevant to the query. It

is often also desirable during the preprocessing stage to normalize tokens that look similar

and convey the same meaning into a single canonical form. By normalizing terms with slight

differences into canonical forms, we can improve the recall of a retrieval system, although

we may risk some decrease in precision.

For English text in general domains, individual English words are naturally used as

tokens. Tokenization can be done by simply using white spaces as delimiters, or in a slightly

more sophisticated way, by using all non-alphanumerical characters as delimiters. Stemming

is often used to normalize the morphological variants of the same base word. In biomedical

text, however, the content words include not only English words, but also many special

terms such as the names of genes, proteins and chemicals. These names often contain special

2

Table 1: An example of the effect of two tokenization strategies for matching the query
“MIP-1-alpha” with three variants and a mismatch

Variant Original Text Tokenized Text
Tokenizer 1 Match? Tokenizer 2 Match?

Query MIP-1-alpha mip 1 alpha N/A mip1alpha N/A
Variant 1 MIP-1alpha mip 1alpha No mip1alpha Yes
Variant 2 (MIP)-1alpha mip 1alpha No mip1alpha Yes
Variant 3 MIP-1 alpha mip 1 alpha Yes mip1 alpha No
Mismatch MIP-1 beta, IFN-alpha mip 1 beta ifn alpha Yes mip1beta ifnalpha No

characters such as numerals, hyphens, slashes and brackets, and the same entity often has

different lexical variants. Clearly, a simple tokenizer for general English text cannot work

well in biomedical text. If all non-alphanumerical characters inside a named entity are used

as delimiters to separate the name into several tokens, the proximity of these tokens is lost

in the bag-of-word representation, which may result in a loss of the semantic meaning of

the tokens and cause mismatches. Moreover, breaking named entities into fragments may

affect the tf.idf weighting of the tokens in an unwanted way. On the other hand, if all the

non-alphanumerical characters are kept, it is hard to capture minor variations of the same

name.

Table 1 shows an example taken from Topic 38 of the ad hoc retrieval task of the TREC

2003 Genomics Track, where two tokenizers produce different matching results. The original

query contains the gene symbol MIP-1-alpha. There are three lexical variants of this symbol

that appear in the judged relevant documents, as shown in the “Original Text” column

of three rows, “Variant 1”, “Variant 2”, and “Variant 3”, in Table 1. The bottom row

shows a piece of text that can possibly become a mismatch. If no special tokenization

strategy is used, none of the three variants will match with the query. Now we consider

two special tokenization strategies: Tokenizer 1 uses all non-alphanumerical characters as

token delimiters; Tokenizer 2 removes special characters such as hyphens and brackets. The

“Tokenized Text” column shows the tokenized text. We can see that Tokenizer 1 captures one

lexical variant, but misses the other two variants and generates one mismatch. Tokenizer 2,

3

however, captures two variants and ignores the mismatch. Thus Tokenizer 2 is superior to

Tokenizer 1 in this particular example. Because many queries in biomedical information

retrieval contain gene names and symbols like the one in the above example, it is important

to find a suitable tokenization strategy in order to generate the best retrieval results.

Despite its importance, to the best of our knowledge, there has not been any work devoted

to a systematic comparison of different tokenization strategies for biomedical information

retrieval. In this paper, we present a set of tokenization heuristics that are generalized from

previous work on biomedical information retrieval, and we conduct a systematic evaluation

of these heuristics. In particular, we define three sets of break points, three break point

normalization methods, and a Greek alphabet normalization method. We also study the

effects of stemming and of stop word removal for biomedical text as these preprocessing

steps may also affect the retrieval performance. The goal of our study is to provide a set

of standard tokenization heuristics that are in general suitable for biomedical information

retrieval. With such standard heuristics, we can presumably have a strong baseline method

for biomedical information retrieval, on which more advanced techniques can be applied, and

against which any new method should be compared.

We evaluate the tokenization heuristics on the data from the TREC 2003, TREC 2004

and TREC 2005 Genomics Track. Thus, the data we use includes all available TREC

biomedical information retrieval test collections for ad hoc document retrieval. We use two

representative retrieval methods. We also apply a pseudo relevance feedback method on

top of one of the retrieval methods we use. Results from both retrieval methods and the

pseudo relevance feedback method show that tokenization strategies can affect the retrieval

performance significantly; good tokenization can improve the performance by up to 96%.

For different types of queries, different sets of tokenization heuristics are preferred in order

to achieve the optimal performance. In particular, for queries with only gene symbols,

removing a set of special characters and replacing Greek letters with Latin letters are shown

to be effective. In contrast, for queries with only full gene names and for verbose queries

4

that also contain English words to describe the information need, replacing special characters

with spaces produces the best results. In addition, for verbose queries, stemming further

improves the performance. Stop word removal does not help retrieval in general.

The rest of the paper is organized as follows: In Section 2, we survey the tokenization

strategies explored in previous work on biomedical information retrieval. In Section 3 and

Section 4, we generalize the various tokenization strategies into a set of heuristics, and

explain the rationale behind each heuristic. We evaluate the different tokenization heuristics

in Section 5. In Section 6, we discuss the scope and limitation of our study, and conclude our

work by recommending a set of suitable tokenization heuristics based on the query types.

2 Related Work

Most previous work on biomedical information retrieval appeared in the Genomics Track

in TREC 2003, TREC 2004 and TREC 2005. To address the prevalent name variation

problem in biomedical text, most groups focused on query expansion, either by using ex-

ternal knowledge bases such as LocusLink to find gene synonyms [Buttcher et al. 2004,

Fujita 2004], or by generating lexical variants of the gene names in the queries using heuristic

rules [Buttcher et al. 2004, Huang et al. 2005]. Tokenization of the corpus was not seriously

studied, and most groups did not describe their tokenization strategies in detail.

Among the work that mentioned special tokenization techniques, Tomlinson [2003] pointed

out that allowing a token to contain both alphabetical and numerical characters was a lit-

tle better than separating them. In contrast, Pirkola and Leppanen [2003] and Crangle

et al. [2004] chose to separate alphabetical and numerical strings in order to handle hy-

phenation of the alphabetical and the numerical parts in a gene name. But Pirkola and

Leppanen [2003] also imposed proximity search to ensure that the separated components

were close together in the retrieved documents. Dayanik [2003] allowed the following special

characters to be part of a token provided that they were not the first or the last character of

5

the token: “(”, “)”, “[”, “]”, “′”, “-”, “,” and “/”. Thus names such as 1,25-dihydroxyvitamin

and dead/h would be considered single tokens.

Some work also considered combining adjacent words that were separated by spaces into

single terms. Song et al. [2003] used a simple rule to combine a short-length word and its ad-

jacent non-short-length word into a single keyword. They reported a 15% improvement over

the baseline using this simple heuristic. Ando et al. [2005] combined adjacent alphabetical

chunks and numerical chunks into token bigrams.

Existing work has also explored different ways to tokenize the queries and to generate

alternative gene names using heuristic rules. Huang et al. [2005] defined break-points in

tokens where hyphens and spaces can be inserted or removed without changing the meaning

of the token. Buttcher et al. [2004] and Huang et al. [2005] also considered replacing Greek

letters with their Latin equivalents to generate lexical variants of gene names in the queries.

Although the Porter stemmer [Porter 1980] was the most commonly used English stem-

mer, a few groups reported experiments with different stemmers on biomedical text. Song

et al. [2003] showed that the Porter stemmer could decrease the performance while the

Lovins stemmer [Lovins 1968] improved the performance. Savoy et al. [2003] showed that

the S stemmer [Harman 1991] sometimes was advantageous over the Lovins stemmer. Many

groups also removed stop words from the document collection using an external stop word

list [Song et al. 2003, Carpenter 2004, Fujita 2004]. A commonly used stop word list for

biomedical text is the one from PubMed [Carpenter 2004]. There has not been any work

comparing the retrieval performance with and without stop word removal.

3 Tokenization Heuristics

In this section, we generalize the various tokenization strategies in previous work into a set

of organized heuristics. Such generalization allows us to better understand the rationale

behind each strategy, and to systematically evaluate the strategies.

6

Table 2: Heuristic rules to remove non-functional characters
1) replace the following characters with spaces: ! ” # $ % & ∗ < = > ? @ \ | ∼
2) remove the following characters if they are followed by a space: . : ; ,
3) remove the following pairs of brackets if the open bracket is preceded by a space and the close
bracket is followed by a space: () []
4) remove the single quotation mark if it is preceded by a space or if it is followed by a space: ′

5) remove ′s and ′t if they are followed by a space
6) remove slash / if it is followed by a space

For all the tokenization strategies we consider, we assume that the last step of tokenization

is to change all upper case letters into lower cases. This case normalization is done in the

very end because some tokenization heuristics rely on the cases of letters to determine where

to break the text. Also, the tokenization strategies that we consider do not include the ones

that combine adjacent words originally separated by spaces into bigram tokens.

Before we go into the various tokenization heuristics, we first define a naive method as

follows: The naive method uses only white space characters as delimiters to break down the

text into tokens. We use the naive method as the very basic baseline to compare against.

3.1 Removal of Non-Functional Characters

In biomedical text, although non-alphanumerical characters are frequently used to help rep-

resent various kinds of entities and other biomedical information, the most important special

characters that make retrieval difficult are those that frequently occur in gene names and

protein names, such as hyphens, slashes, and brackets. Many other non-alphanumerical

characters such as ‘=’ and ‘#’ usually do not occur inside an entity name or convey any

important semantic meaning. These “non-functional” characters can thus be excluded from

the tokens. Previous work that had special handling of non-alphanumerical characters also

only focused on a subset of non-alphanumerical characters. Therefore, as a first step, we

manually identified a set of special characters that we believe can be safely discarded in cer-

tain context, and we defined a set of rules in the form of regular expressions to remove these

special characters. Table 2 lists the heuristic rules we defined to remove such non-functional

characters. The first rule presumably removes characters that we believe rarely occur in

7

Table 3: Example texts before and after removal of non-functional characters
Original Text Modified Text Rule(s) Applied
(HbA(1c) >=6% or GO >=1.26 g/L), HbA(1c) 6 or GO 1.26 g/L (1), (2), (3)
(′ppm′) ppm (3), (4)
(Langerhan′s cells) Langerhan cells (3), (5)

Table 4: The counts of all non-alphanumerical characters in 4000 randomly chosen gene
names and symbols

Character Count Character Count Character Count
- 1042 90 ; 9
, 396 . 88 [3
: 230 / 65] 3
) 209 + 18 @ 2
(208 ′ 16 * 1

gene names or symbols. The second rule presumably removes periods, colons, semi-colons

and commas when they are indeed used as punctuation marks rather than some meaningful

characters inside gene names or symbols. Similarly, the third rule presumably removes round

brackets and square brackets when they are not inside gene names, because usually when

brackets occur inside gene names, either the open bracket or the close bracket has no adjacent

space, such as in (MIP)-1alpha. The fourth and the fifth rules deal with single quotation

marks and apostrophes. And the last rule deals with slashes when they are not inside gene

names or symbols. Table 3 shows some example texts before and after the non-functional

characters are removed.

After applying these heuristic rules to raw text, the following non-alphanumerical char-

acters may still occur in the modified text: “(”, “)”, “[”, “]”, “-”, “ ”, “/”, “.”, “:”, “;”,

“,”, “′”, and “+”. To see whether indeed these are the non-alphanumerical characters that

may occur inside gene names and symbols, we randomly chose 4000 gene names and symbols

from LocusLink, and counted all the non-alphanumerical characters in these names. Table 4

shows the counts. Comparing the table with the list of characters above, we can conclude

that (1) the special characters we have removed indeed do not occur in gene names and

symbols often, and (2) the special characters that remain in the text are all possible to occur

in gene names and symbols. Exactly how much the retrieval performance is affected by

8

Table 5: Two sets of special characters that are left in the text after removal of the non-
functional characters

special character set 1 special character set 2
() [] - / . : ; , ’ +

removing these non-functional characters is an empirical question and will be examined in

our experiments.

3.2 Break Points

After the non-functional characters are removed, the remaining text consists of alphanu-

merical characters and the special characters listed in Table 5. We divided these special

characters into two sets. The special characters in set 1 are often used to separate the sev-

eral components of an entity name, such as in (MIP)-1alpha, pRB/p105, and TrpEb 1. The

special characters in set 2 are not very frequently used for gene names, but rather mostly used

inside numbers like 0.20 and 20,000, inside chemical formulas like the ions Ca2+ and Na+, or

inside names of chemical compounds and DNA sequences to describe the structure of those

entities, like in 1,2,3,4-TeCDD, 2,3,7,8-TeCDD and 2’,5’-linked 3’-deoxyribonucleotides. In

most of these cases, it is not necessary to divide the two alphanumerical strings around those

special characters in set 2 into different components.

Besides these special characters listed in Table 5, there are also other places within some

strings where we should consider breaking the strings into smaller tokens. These are the

places where an alphabetical character changes to a numerical character and vice versa, or

where a sequence of upper case letters changes to a sequence of lower case letters and vice

versa. Formally, following the work in [Huang et al. 2005], we use the following rules to

define three kinds of “hidden places” where strings can be further broken down:

1. Places between an alphabetical character on the left(right) and a numerical character

on the right(left). For example, between p and 105 in p105.

2. Places between a lower case letter on the left and an upper case letter on the right.

9

For example, between Trp and Eb 1 in TrpEb 1.

3. Places between an upper case letter on the left and a lower case letter on the right,

unless the upper case letter is preceded by a space, or by a numerical character or

another lower case letter (in which case the upper case letter will be separated from

its previous lower case letter by rule (2)). For example, between MIP and alpha in

MIPalpha, but not between E and b in TrpEb 1.

We regard these places as “hidden” because these places are not marked by a single

special character, but by the characters to the left and to the right of these places. With

these rules, gene symbols such as MIP-1alpha and MIP-1-alpha can both be broken down

into MIP 1 alpha, making it possible to match them.

Borrowing the term from [Huang et al. 2005], we refer to all the special characters listed

in Table 5 and the three kinds of hidden places defined above as break points. The break

points are the places where an entity name can be potentially broken down into smaller

components such that if we connect these smaller components differently, we could form a

lexical variant of the original name. Because of the different degrees to which we believe

these break points should be used, we consider three sets of break points.

• Break Point Set 1 (BP1) consists of the special characters in special character set

1 in Table 5.

• Break Point Set 2 (BP2) consists of both special character set 1 and special char-

acter set 2 in Table 5.

• Break Point Set 3 (BP3) consists of all special characters in BP2 and the hidden

break points defined by the three rules.

10

3.3 Break Point Normalization

With the break points we have defined in the last section, we can now normalize the different

lexical variants of the same entity by normalizing the break points into the same represen-

tation. There are different ways to normalize the break points. One way is to replace all the

break points with a single special character, such as a hyphen, and keep these break points

designated by hyphens in the final tokens. Thus, if we use BP3, gene symbols MIP-1-alpha,

MIP-1alpha and (MIP)-1alpha will all become the same single token MIP-1-alpha. Another

way to normalize the break points is to replace all of them with spaces. Since spaces are

used as token delimiters in the very end, replacing the break points with spaces is the same

as splitting the text into tokens by these break points. For example, when BP3 is used, gene

symbols MIP-1-alpha, MIP-1alpha and (MIP)-1alpha will all become three tokens: MIP, 1,

and alpha. There are advantages and disadvantages of both normalization methods. For

the first one, the proximity of the components of a gene name is preserved, ensuring high

precision in matching entity names. However, it could not handle the case when one lexical

variant contains a space while another lexical variant has a break point in the place of the

space, such as in MIP-1 alpha and MIP-1-alpha. The second normalization method can

handle this case well because all break points are replaced with spaces. However, proximity

of the components of the name is lost, which may cause mismatches.

There is another problem with the two normalization methods described above. Some-

times a hidden break point cannot be captured by the three rules we defined in Section 3.2.

For example, the topics in TREC 2003 Genomics Track contain these gene alias symbols:

Pkca and Prkca (for the gene “Protein kinase C, alpha”), Tcra and Tcralpha (for the gene

“T-cell receptor alpha”), and Ifnb2 (for the gene “Interleukin 6 (interferon, beta 2)”). We

can see that the Greek letters alpha and beta, or their Latin equivalents a and b, cannot be

clearly distinguished from the rest of the text in these symbols. Thus if a hyphen is inserted

into such a hidden break point, this hyphenated variant cannot be matched with the one

without the hyphen by either of the normalization methods we described above. Because

11

such hidden break points are too hard to detect by any simple regular expressions, one way

to solve the problem is to normalize all variants into the form without hyphens or any other

special characters. We have not seen such an approach in any previous work, but we think

this approach is a reasonable solution to the problem with undetectable break points.

To summarize, we consider three methods to normalize the break points. Method one

replaces all break points with hyphens (or inserts hyphens into hidden break points). We

call this method the Hyphen-Normalization method, or H-Norm. Method two replaces all

break points with spaces (or inserts spaces into hidden break points). We call this method

the Space-Normalization method, or S-Norm. Method three removes all break points (or

does nothing to hidden break points). We call this method the Join-Normalization method,

or J-Norm. After normalization, we can then simply use the white space characters to split

the text into tokens. Note that all three break point normalization methods can be used in

conjunction with any of the three sets of break points, except that when J-Norm is used,

BP3 becomes essentially the same as BP2.

3.4 Greek Alphabet Normalization

Another heuristic that has been previously explored is to replace Greek letters with their

Latin equivalents. In biomedical text, entity names often contain Greek letters such as

alpha, beta, etc. Sometimes these Greek letters are abbreviated as a, b, etc., but there are

no consistent rules as to when the Greek letters should be abbreviated. A simple method to

tackle this problem is to replace all occurrences of Greek letters with the Latin letters that

are equivalent to them.

Note that sometimes a Greek letter can be embedded in an alphabetical string and hard to

detect, such as in Tcralpha. We cannot distinguish the occurrence of alpha in Tcralpha from

that in alphabet, which should not be considered an embedded Greek letter. Since it is hard

to distinguish these two cases, we do not attempt to do so, and we follow a simple strategy

as follows. We check each maximum span of consecutive alphabetical characters in the text,

12

and replace the ones that are in the Greek alphabet. Thus, both the alpha in Tcralpha

and that in alphabet will be replaced by a. We call this Greek letter replacement strategy

the Greek-Normalization heuristic, or G-Norm. Note that while the three normalization

methods described in Section 3.3 are mutually exclusive, G-Norm is orthogonal to those

three normalization methods, and thus can be applied on top of any of them.

4 Stemming and Stop Word Removal

After tokenization, stemming is an optional step to further normalize the tokens. Based on

previous work that explored stemming algorithms for biomedical information retrieval, we

consider three stemmers in our evaluation: the Porter stemmer [Porter 1980], the Lovins

stemmer [Lovins 1968], and the S stemmer [Harman 1991]. The S stemmer only removes a

few common word endings. The Lovins stemmer is more aggressive than the Porter stemmer,

which in turn is more aggressive than the S stemmer.

We also consider two stop word removal methods. One method uses an external stop

word list. In our experiments, we use the stop word list from PubMed. Since stop words are

essentially the most frequent words in a document collection, the second method we consider

uses a stop word list generated from the document collection itself by extracting the most

frequent k tokens.

5 Evaluation

In this section, we show our empirical evaluation of the set of tokenization heuristics we have

described in Sections 3 and 4. Specifically, our goal is as follows: For removal of the non-

functional special characters, intuitively it should improve the performance, because most of

the noise caused by punctuation such as periods and commas is removed by this heuristic.

The purpose of the evaluation of this heuristic is thus to see whether this non-functional

character removal step is safe for most of the queries. For the three sets of break points

13

we defined, BP1, BP2, and BP3, the goal of the evaluation is to see which set gives the

best retrieval performance when it is used in conjunction with break point normalization.

Similarly, for the three break point normalization methods, the goal is the find the best nor-

malization method for retrieval. For Greek alphabet normalization, we want to see whether

this replacement can improve the retrieval performance. Lastly, for stemming and stop word

removal, we want to see whether stemming improves the performance and which stemmer

performs the best, and whether removing stop words improves the performance.

We also need to make our evaluation of tokenization strategies independent of the retrieval

method being used so that the best tokenization strategies we find can be used for any

standard information retrieval method. All the state-of-the-art retrieval formulas are based

on the bag-of-word representation and share similar retrieval heuristics [Fang et al. 2004].

We thus expect them to be affected by the tokenization method in a similar way. In our

study, we choose two representative retrieval methods to use in our evaluation: a TF-IDF

retrieval method with BM25 term frequency weighting, and the KL-divergence retrieval

method [Lafferty and Zhai 2001], which represents the language modeling approach. We

call the first method “TFIDF” and the second method “KL” in this section. The details of

the TFIDF method are explained in [Zhai 2001a].

Both retrieval methods are implemented in the Lemur Language Modeling Toolkit1, which

we use for our experiments. We tune the parameters in our experiments because the param-

eters are sensitive to the query type and to the tokenization heuristics used.

Previous studies have shown that pseudo relevance feedback can often improve the re-

trieval performance. Usually pseudo relevance feedback works by introducing useful new

terms to the queries. To see whether the choice of the best tokenization strategies is affected

by whether pseudo relevance feedback is used, we also applied the model-based feedback

method [Zhai and Lafferty 2001b] in our experiments. This method is based on the KL-

divergence retrieval method, and is also implemented in the Lemur Toolkit. The number of

1http://www.lemurproject.org/

14

feedback documents to use is set to 5 in all our experiments. The other feedback param-

eters are tuned in the experiments. We refer to this pseudo relevance feedback method as

“KL-FB” in the rest of this section.

In all our experiments, for each set of queries, we use the mean average precision (MAP)

measure as the evaluation metric. MAP has so far been the standard measure used to

evaluate ad hoc retrieval results and has also been used in the TREC Genomics Track

evaluation [Hersh et al. 2004, Hersh et al. 2005]. Compared with some other performance

measures such as “precision at 10” and “R-precision”, MAP has the advantage of being

sensitive to the rank of every relevant document, thus it reflects well the overall ranking

accuracy.

5.1 Document Collections and Queries

The document collections and the queries we use for evaluation are from the ad hoc retrieval

task of the TREC 2003, TREC 2004 and TREC 2005 Genomics Track2. The document

collection used in the TREC 2003 Genomics Track contains 525,938 MEDLINE records

between April 2002 and April 2003. The collection used in 2004 and 2005 is a 10-year subset

of MEDLINE records from 1994 to 2003.

The topics used in the three years’ Genomics Track represent different types of queries

and different information need. The 50 topics from TREC 2003 each consist of a gene

and an organism name with the specific retrieval task formally stated as follows: For gene

X, find all MEDLINE references that focus on the basic biology of the gene or its protein

products from the designated organism. Basic biology includes isolation, structure, genetics

and function of genes/proteins in normal and disease states. Because this information need is

very broad but at the same time centered around the topic genes, we use only the gene names

to form keyword queries. We do not use the names of the organisms because our preliminary

experiment results show that including the organism names may hurt the performance. For

2http://ir.ohsu.edu/genomics/

15

the gene in each topic, several types of names are given, including the official name, the

official symbol, the alias symbols, the product, etc. These types of names fall into two

categories: the gene names and gene products are usually long, descriptive names, such as

chemokine (C-C motif) ligand 3, and the gene symbols are short, symbolic names, such as

CCL3 and MIP1A. We thus form two groups of keyword queries from the 2003 topics. For

each 2003 topic, we use the union of the topic gene’s descriptive names to form a name

query, and we use the union of the gene’s symbolic names to form a symbol query. In the

end, we get 50 keyword name queries and 50 keyword symbol queries from the 2003 topics.

This separation presumably captures two possible types of real-world queries from biology

researchers.

The 50 topics from TREC 2004 each consist of a title field, an information need field,

and a context field. These topics may or may not contain a gene or protein name. Our

preliminary experiment results show that using only the information need field to form

queries gives the best retrieval performance. We thus use the text in the information need

field only to form 50 verbose queries. These queries often contain common English words

as background words, such as about in the query “Find articles about Ferroportin-1, an iron

transporter, in humans.”

The 50 topics from TREC 2005 are structured topics with templates. There are 5 tem-

plates representing 5 kinds of information need. For example, one template is “Provide

information about the role of the gene X involved in the disease Y.” We exclude those tem-

plate background words such as provide and information when forming the queries. After

removing the background words, most queries still contain more than 5 words, including

some English words, so we still consider them verbose queries. We further divide the queries

into two groups: queries that involve at least one gene (queries belonging to Templates 2, 3,

4 and 5), and queries that do not involve any gene (queries belonging to Template 1). We

exclude Topic 135 because it does not have any judged relevant document. We thus get 39

gene queries and 10 non-gene queries from the 2005 topics.

16

To summarize, we use 5 sets of queries for evaluation: 50 keyword gene symbol queries

from TREC 2003, 50 keyword gene name queries from TREC 2003, 50 verbose mixed queries

from TREC 2004, 39 verbose gene queries from TREC 2005, and 10 verbose non-gene queries

from TREC 2005. The 2004 queries are more verbose than the 2005 queries. We do not con-

sider query expansion using external knowledge bases because the goal of our study is not to

improve the absolute retrieval performance, but rather to compare the tokenization strate-

gies. Once we find the best set of tokenization strategies, we can establish a strong baseline

method for biomedical information retrieval by using the best tokenization strategies. Pre-

sumably, any more sophisticated technique tailored for biomedical information retrieval is

orthogonal to this strong baseline, and therefore can be applied on top of the strong baseline.

5.2 Tokenization Heuristics

To evaluate the tokenization heuristics, we first compare the retrieval performance before and

after the removal of non-functional characters. Concluding that removing the non-functional

characters is safe, we then further apply the three break point normalization methods in

conjunction with the three sets of break points. This gives us 9 sets of experiments. We

then evaluate the Greek alphabet normalization heuristic by applying it on top of each break

point normalization method in conjunction with the best set of break points. All experiments

are run on each set of queries.

5.2.1 Removal of Non-Functional Characters

Table 6 shows the comparison of the retrieval performance between the naive tokenization

method, which is defined in Section 3, and the tokenization method that removes the non-

functional characters. We refer to the latter method as the baseline method because it is

applicable to general English text as well. Recall that the naive method uses only white

space characters as delimiters. The “% Diff.” rows show the relative difference between the

baseline method and the naive method for each set of queries. An asterisk indicates that the

17

Table 6: Comparison of the naive and the baseline methods

Keyword Queries

03 Symbol

Method TFIDF KL KL-FB

Naive 0.1548 0.1451 0.1668
Baseline 0.1659 0.1523 0.1817
% Diff. +7.17% +4.96% +8.93%

03 Name

Method TFIDF KL KL-FB

Naive 0.0919 0.0833 0.1047
Baseline 0.0958 0.0891 0.0975
% Diff. +4.24%* +6.96%* -6.88%

The numbers shown here are the MAP mea-
sures. The % Diff. rows show the relative
difference between the two methods. Aster-
isks indicate differences that are statistically
significant.

Verbose Queries

04

Method TFIDF KL KL-FB

Naive 0.1736 0.1671 0.2377
Baseline 0.2695 0.2687 0.2972
% Diff. +55.24%* +60.80%* +25.03%*

05 Gene

Method TFIDF KL KL-FB

Naive 0.1929 0.1921 0.2041
Baseline 0.2198 0.2260 0.2343
% Diff. +13.95%* +17.65%* +14.80%*

05 Non-gene

Method TFIDF KL KL-FB

Naive 0.1166 0.1302 0.1864
Baseline 0.1416 0.1560 0.2297
% Diff. +21.44% +19.82% +23.23%*

difference is statistically significant at the 95% confidence level. We can see that in almost

all cases, the baseline method outperforms the naive method.

The improvement is especially substantial with the verbose queries. Note that the main

purpose of removing the non-functional characters is to normalize the words connected with

punctuation marks into their canonical forms, i.e. the same words without any connected

punctuation marks. For example, “gene,” will be normalized into “gene”. The difference

between the verbose queries and the keyword queries suggests that the common English

words in the queries are more affected by the removal of the non-functional characters than

the gene names or symbols in the queries. Indeed, compared with gene names or symbols,

common English words are more likely to be connected with punctuation marks such as

periods and commas.

5.2.2 Break Points

Table 7 shows the comparison among the three sets of break points when one of H-Norm,

S-Norm and J-Norm is used in conjunction. For each set of queries and each normalization

method, the performance of BP1 is shown in the first row, followed by the performance of

BP2 and of BP3. The “% Diff.” rows show the relative difference between BP2 or BP3 and

18

Table 7: Comparison of the three break point sets

Keyword Queries

03 Symbol

Norm BP TFIDF KL KL-FB

BP1 0.1653 0.1548 0.1911

BP2 0.1636 0.1537 0.1818
H % Diff. -1.03% -0.71% -4.87%*

BP3 0.1615 0.1608 0.1873
% Diff. -2.30% +3.88% -1.99%

BP1 0.1528 0.1466 0.1726

BP2 0.1481 0.1434 0.1779
S % Diff. -3.08% -2.18% +3.07%

BP3 0.1038 0.1276 0.1515
% Diff. -32.07%* -12.96%* -12.22%

BP1 0.1755 0.1758 0.1920

J BP2/
BP3 0.1740 0.1746 0.1905

% Diff. -0.85% -0.68% -0.78%

03 Name

Norm BP TFIDF KL KL-FB

BP1 0.0978 0.0917 0.0997

BP2 0.0940 0.0881 0.0972
H % Diff. -3.89% -3.93% -2.51%*

BP3 0.0904 0.0880 0.0971
% Diff. -7.57% -4.03% -2.61%

BP1 0.1070 0.1061 0.1132

BP2 0.1045 0.1078 0.1120
S % Diff. -2.34%* +1.60% -1.06%

BP3 0.0900 0.0969 0.1096
% Diff. -15.89%* -8.67% -3.18%

BP1 0.0930 0.0916 0.1005

J BP2/
BP3 0.0894 0.0882 0.0978

% Diff. -3.87% -3.71% -2.69%

The numbers shown here are the MAP mea-
sures. The % Diff. rows show the relative dif-
ference between BP2 or BP3 with BP1. Aster-
isks indicate differences that are statistically
significant. When J-Norm is used, BP2 and
BP3 become the same.

Verbose Queries

04

Norm BP TFIDF KL KL-FB

BP1 0.2702 0.2693 0.3027

BP2 0.2715 0.2702 0.2992
H % Diff. +0.48% +0.33% -1.16%

BP3 0.2698 0.2678 0.2955
% Diff. -0.15% -0.56% -2.38%

BP1 0.3201 0.3015 0.3329

BP2 0.3122 0.3006 0.3258
S % Diff. -2.47% -0.30%* -2.13%*

BP3 0.2339 0.2406 0.2967
% Diff. -26.93% -20.20% -10.87%

BP1 0.2823 0.2741 0.3033

J BP2/
BP3 0.2838 0.2749 0.3054

% Diff. +0.53%* +0.29% +0.69%*

05 Gene

Norm BP TFIDF KL KL-FB

BP1 0.2424 0.2432 0.2606

BP2 0.2421 0.2431 0.2604
H % Diff. -0.12%* -0.04% -0.08%

BP3 0.2442 0.2447 0.2605
% Diff. +0.74% +0.62% +1.69%

BP1 0.2757 0.2808 0.3024

BP2 0.2745 0.2793 0.3017
S % Diff. -0.44% -0.53%* -0.23%

BP3 0.2578 0.2757 0.2941
% Diff. -6.49% -1.82% -2.74%

BP1 0.2471 0.2476 0.2689

J BP2/
BP3 0.2469 0.2475 0.2692

% Diff. -0.08%* -0.04% +11.00%

05 Non-gene

Norm BP TFIDF KL KL-FB

BP1 0.1415 0.1563 0.2260

BP2 0.1415 0.1563 0.2303
H % Diff. 0.00% 0.00% +1.90%

BP3 0.1414 0.1562 0.2266
% Diff. -0.71% -0.06% +0.27%

BP1 0.1706 0.1858 0.2352

BP2 0.1650 0.1835 0.2408
S % Diff. -3.28% -1.24% +2.38%

BP3 0.1654 0.1795 0.2205
% Diff. -3.05% -3.39% -6.25%

BP1 0.1416 0.1565 0.2268

J BP2/
BP3 0.1417 0.1563 0.2270

% Diff. +0.07% -0.13% +0.09%

19

BP1. An asterisk indicates a statistically significant difference. Although the pattern is not

consistent, we can see that BP1 performs better than BP2 and BP3 in most of the cases,

especially when S-Norm is used, or when J-Norm is used for the keyword queries. As we

will show next, S-Norm and J-Norm are preferred over H-Norm. We thus choose BP1 as the

best set of break points to use.

5.2.3 Break Point Normalization

Table 8 shows the comparison among the three break point normalization methods when

each set of break points is used in conjunction. For the keyword symbols queries, we put

the performance of J-Norm in the first row, followed by the performance of H-Norm and of

S-Norm. For all the other query sets, we put S-Norm in the first row, followed by H-Norm

and J-Norm. The “% Diff.” rows show the relative difference between the previous row and

the first row in that section. In another word, for the keyword symbol queries, the “% Diff.”

rows show the relative difference between H-Norm or S-Norm and J-Norm; for the other

queries, the “% Diff.” rows show the relative difference between H-Norm or J-Norm and

S-Norm. An asterisk indicates a statistically significant difference.

It is very clear from Table 8, especially when BP1 or BP2 is used, that for the keyword

symbol queries, J-Norm performs the best, and for the keyword name queries and the verbose

queries, S-Norm performs the best. This suggests that for gene symbols that are combina-

tions of alphabetical characters, numerical characters and special characters such as hyphens,

removing the special characters is the most effective way to normalize different lexical vari-

ants of the same name. For keyword name queries and verbose queries, however, most of the

query words are not gene symbols. Replacing special characters such as hyphens and slashes

with spaces is the most effective normalization method. This is probably not only because

S-Norm may help normalize the gene names but also because it effectively separates hyphen-

ated compound words such as CCAAT/enhancer-binding and azaserine-induced, which are

better to be separated for retrieval purposes.

20

Table 8: Comparison of break point normalization methods

Keyword Queries

03 Symbol

BP Norm TFIDF KL KL-FB

J 0.1755 0.1758 0.1920

H 0.1653 0.1548 0.1911
BP1 % Diff. -5.81% -11.95% -0.47%

S 0.1528 0.1466 0.1726
% Diff. -12.93% -16.61% -10.10%

J 0.1740 0.1746 0.1726

H 0.1636 0.1537 0.1818
BP2 % Diff. -5.98% -11.97% -4.57%

S 0.1481 0.1434 0.1779
% Diff. -14.89% -17.87% -6.61%

J 0.1740 0.1746 0.1905

H 0.1615 0.1608 0.1873
BP3 % Diff. -7.18% -7.90% -1.68%

S 0.1013 0.1276 0.1515
% Diff. -40.34%* -26.92%* -20.47%*

03 Name

BP Norm TFIDF KL KL-FB

S 0.1070 0.1061 0.1132

H 0.0978 0.0917 0.0997
BP1 % Diff. -8.60%* -13.57% -11.93%

J 0.0930 0.0916 0.1005
% Diff. -13.08%* -13.67% -11.22%

S 0.1045 0.1078 0.1120

H 0.0940 0.0881 0.0972
BP2 % Diff. -10.05%* -18.27% -13.21%

J 0.0894 0.0882 0.0978
% Diff. -14.45%* -18.18% -12.68%

S 0.0900 0.0969 0.1096

H 0.0904 0.0880 0.0971
BP3 % Diff. +0.44% -9.18% -11.41%

J 0.0894 0.0882 0.0978
% Diff. -0.67% -8.98% -10.77%

The numbers shown here are the MAP mea-
sures. The “% Diff.” rows show the relative
difference between the previous row and the
first row in the current section. Asterisks in-
dicate differences that are statistically signifi-
cant.

Verbose Queries

04

BP Norm TFIDF KL KL-FB

S 0.3201 0.3015 0.3329

H 0.2702 0.2693 0.3027
BP1 % Diff. -15.59%* -10.68%* -9.07%

J 0.2823 0.2741 0.3033
% Diff. -11.81%* -9.09%* -8.89%

S 0.3122 0.3006 0.3258

H 0.2715 0.2702 0.2992
BP2 % Diff. -13.04%* -10.11% -8.16%

J 0.2838 0.2749 0.3054
% Diff. -9.10%* -8.55% -6.26%

S 0.2339 0.2406 0.2967

H 0.2698 0.2678 0.2955
BP3 % Diff. +15.35% +11.31% -0.40%

J 0.2838 0.2749 0.3054
% Diff. +21.33% +14.26% +2.93%

05 Gene

BP Norm TFIDF KL KL-FB

S 0.2757 0.2808 0.3024

H 0.2424 0.2432 0.2606
BP1 % Diff. -12.08%* -13.39%* -13.82%*

J 0.2471 0.2476 0.2689
% Diff. -10.37%* -11.82%* -11.08%*

S 0.2745 0.2793 0.3017

H 0.2421 0.2431 0.2604
BP2 % Diff. -11.80%* -12.96%* -13.69%*

J 0.2469 0.2475 0.2692
% Diff. -10.05%* -11.39%* -10.77%*

S 0.2578 0.2757 0.2941

H 0.2442 0.2447 0.2650
BP3 % Diff. -5.28%* -11.24%* -9.89%*

J 0.2469 0.2475 0.2692
% Diff. -4.23% -10.23%* -8.47%*

05 Non-gene

BP Norm TFIDF KL KL-FB

S 0.1708 0.1858 0.2352

H 0.1415 0.1563 0.2260
BP1 % Diff. -17.06% -15.88% -3.91%

J 0.1416 0.1656 0.2268
% Diff. -17.00% -15.77% -3.57%

S 0.1650 0.1835 0.2408

H 0.1415 0.1563 0.2303
BP2 % Diff. -14.24% -14.82%* -4.36%

J 0.1417 0.1563 0.2270
% Diff. -14.12% -14.82% -5.73%

S 0.1654 0.1795 0.2205

H 0.1414 0.1562 0.2266
BP3 % Diff. -14.51% -12.98% +2.77%

J 0.1417 0.1563 0.2270
% Diff. -14.33% -12.92% +2.95%

21

Table 9: The effect of Greek alphabet normalization

Keyword Queries

03 Symbol

Norm G-Norm TFIDF KL KL-FB

No 0.1653 0.1548 0.1911
H Yes 0.1659 0.1541 0.1886

% Diff. +0.36% -0.45% -1.31%

No 0.1528 0.1466 0.1726
S Yes 0.1534 0.1471 0.1724

% Diff. +0.39% +0.34% -0.12%

No 0.1755 0.1758 0.1920
J Yes 0.1783 0.1789 0.1943

% Diff. +1.60% +1.76% +1.19%

03 Name

Norm G-Norm TFIDF KL KL-FB

No 0.0978 0.0917 0.0997
H Yes 0.0951 0.0899 0.0980

% Diff. -2.76%* -1.96%* -1.71%

No 0.1070 0.1061 0.1132
S Yes 0.1033 0.1034 0.1094

% Diff. -3.46%* -2.54%* -3.36%*

No 0.0930 0.0916 0.1005
J Yes 0.0896 0.0897 0.0976

% Diff. -3.66%* -2.07%* -2.89%*

The numbers shown here are the MAP mea-
sures. The “% Diff.” rows show the relative
difference between the previous row and the
first row in the current section. Asterisks in-
dicate differences that are statistically signifi-
cant.

Verbose Queries

04

Norm G-Norm TFIDF KL KL-FB

No 0.2702 0.2693 0.3027
H Yes 0.2688 0.2671 0.2992

% Diff. -0.52% -0.82%* -1.16%

No 0.3201 0.3015 0.3329
S Yes 0.3186 0.2997 0.3308

% Diff. -0.47% -0.60% -0.63%*

No 0.2823 0.2741 0.3033
J Yes 0.2832 0.2740 0.3015

% Diff. +0.32% -0.04% -0.59%

05 Gene

Norm G-Norm TFIDF KL KL-FB

No 0.2424 0.2432 0.2606
H Yes 0.2416 0.2428 0.2602

% Diff. -0.33% -0.16% -0.15%

No 0.2757 0.2808 0.3024
S Yes 0.2751 0.2814 0.3029

% Diff. -0.22% +0.21% +0.17%

No 0.2471 0.2471 0.2689
J Yes 0.2465 0.2476 0.2680

% Diff. -0.24%* -0.20%* -0.33%

05 Non-gene

Norm G-Norm TFIDF KL KL-FB

No 0.1415 0.1563 0.2260
H Yes 0.1415 0.1563 0.2177

% Diff. 0.00% 0.00% -3.67%

No 0.1706 0.1858 0.2352
S Yes 0.1705 0.1858 0.2343

% Diff. -0.06% 0.00% -0.38%

No 0.1416 0.1565 0.2268
J Yes 0.1416 0.1565 0.2267

% Diff. 0.00% 0.00% -0.04%

5.2.4 Greek Alphabet Normalization

In Table 9, we show the effect of applying G-Norm on top H-Norm, S-Norm and J-Norm when

the best set of break points, BP1, is used. For each set of queries and each normalization

method, the “% Diff.” row shows the relative difference between the methods with and

without G-Norm. An asterisk indicates a statistically significant difference. Although the

pattern is not very clear in the comparison, we can see that in most cases, Greek alphabet

normalization does not improve the performance. However, for keyword symbol queries,

when J-Norm is used, G-Norm does improve the performance a little bit. Since J-Norm is

the best break point normalization method for keyword symbol queries, we conclude that

we should apply G-Norm on top of J-Norm when the queries are keyword symbol queries.

22

Table 10: The effect of stemming

Keyword Queries

03 Symbol

Method TFIDF KL KL-FB

Best Tokenization 0.1783 0.1789 0.1943

+Porter 0.1743 0.1762 0.1870
% Diff. -2.24%* -1.51%* -3.76%*
+Lovins 0.1728 0.1713 0.1871
% Diff. -3.08%* -4.25%* -3.71%

+S 0.1749 0.1768 0.1905
% Diff. -1.91%* -1.17%* -1.96%

03 Name

Method TFIDF KL KL-FB

Best Tokenization 0.1070 0.1061 0.1132

+Porter 0.1080 0.1029 0.1118
% Diff. +0.93% -3.02%* -1.24%
+Lovins 0.1054 0.1030 0.1110
% Diff. -1.50% -2.92%* -1.94%

+S 0.1070 0.1020 0.1117
% Diff. 0.00% -3.86% -1.33%

The numbers shown here are the MAP mea-
sures. The “% Diff.” rows show the relative
difference between each stemmer and the best
tokenization method without stemming. As-
terisks indicate statistically significant differ-
ences.

Verbose Queries

04

Method TFIDF KL KL-FB

Best Tokenization 0.3201 0.3015 0.3329

+Porter 0.3297 0.3285 0.3357
% Diff. +3.00% +8.96%* +0.84%
+Lovins 0.3088 0.3058 0.2969
% Diff. -3.53% +1.43% -10.81%

+S 0.3240 0.3219 0.3472
% Diff. +1.22% +6.77%* +4.30%

05 Gene

Method TFIDF KL KL-FB

Best Tokenization 0.2757 0.2808 0.3024

+Porter 0.2859 0.2892 0.3119
% Diff. +3.70% +2.99%* +3.14%*
+Lovins 0.2964 0.2935 0.3251
% Diff. +7.51%* +4.52%* +7.51%*

+S 0.2849 0.2830 0.3058
% Diff. +3.34%* +0.78%* +1.12%*

05 Non-gene

Method TFIDF KL KL-FB

Best Tokenization 0.1706 0.1858 0.2352

+Porter 0.1607 0.1964 0.2385
% Diff. -5.80% +5.71% +1.40%
+Lovins 0.1788 0.2005 0.2378
% Diff. +4.81% +7.91% +1.11%

+S 0.1714 0.1949 0.2408
% Diff. +0.47% +4.90% +2.38%

5.3 Stemming and Stop Word Removal

5.3.1 Stemming

In this section, we compare non-stemming and stemming performance, and compare the

different stemming algorithms. We apply three stemmers, the Porter stemmer, the Lovins

stemmer, and the S stemmer, on top of the best tokenization strategy for each set of queries.

The performance is shown in Table 10. For each set of queries, the performance of the

best tokenization method is shown in the first row, followed by the performance when each

stemmer is applied on top of the best tokenization method. The “% Diff.” rows show

the relative difference between each stemmer and the best tokenization method. Asterisks

indicate statistically significant differences. We can see that for keyword queries, all three

stemmers decrease the performance in most cases. However, for verbose queries, in most

cases all three stemmers improve the performance. There is no clear conclusion about which

23

Table 11: The effect of stop word removal

Keyword Queries

03 Symbol

Stop Word List TFIDF KL KL-FB

No 0.1783 0.1786 0.1943

Pubmed (132) 0.1783 0.1753 0.1903
% Diff. 0.00% -2.01% -2.06%

Collection-5 0.1783 0.1778 0.1928
% Diff. 0.00% -0.61% -0.77%

Collection-10 0.1783 0.1771 0.1939
% Diff. 0.00% -1.01% -0.21%

Collection-20 0.1783 0.1768 0.1915
% Diff. 0.00% -1.17% -1.44%

Collection-100 0.1783 0.1771 0.1865
% Diff. 0.00% -1.01% -4.01%

03 Name

Stop Word List TFIDF KL KL-FB

No 0.1070 0.1061 0.1132

Pubmed (132) 0.1071 0.0953 0.1155
% Diff. +0.09% -10.18% +2.03%

Collection-5 0.1070 0.1035 0.1119
% Diff. 0.00% -2.45% -1.15%

Collection-10 0.1070 0.1015 0.1118
% Diff. 0.00% -4.34% -1.24%

Collection-20 0.1070 0.1006 0.1116
% Diff. 0.00% -5.18% -1.41%

Collection-100 0.0990 0.0861 0.0905
% Diff. -7.48%* -18.85%* -10.05%*

The numbers shown here are the MAP mea-
sures. “Collection-k” means the collection-
based stop word list with the most frequent
k tokens from the collection. The “% Diff.”
rows show the relative difference brought by
removing a certain number of stop words. As-
terisks indicate statistically significant differ-
ences.

Verbose Queries

04

Stop Word List TFIDF KL KL-FB

No 0.3297 0.3285 0.3357

Pubmed (132) 0.3346 0.3219 0.3300
% Diff. +1.49%* -2.01%* -1.70%*

Collection-5 0.3298 0.3248 0.3286
% Diff. +0.03% -1.13%* -2.11%*

Collection-10 0.3298 0.3229 0.3263
% Diff. +0.03%* -1.40%* -2.80%*

Collection-20 0.3288 0.3216 0.3289
% Diff. -0.27% -2.10%* -2.03%*

Collection-100 0.3216 0.3099 0.3206
% Diff. -2.46%* -5.66%* -4.50%*

05 Gene

Stop Word List TFIDF KL KL-FB

No 0.2859 0.2892 0.3119

Pubmed (132) 0.2840 0.2916 0.3177
% Diff. -0.66% +0.83% +1.86%*

Collection-5 0.2860 0.2937 0.3159
% Diff. +0.04%* +1.56%* +1.28%*

Collection-10 0.2860 0.2926 0.3178
% Diff. +0.03% +1.18%* +1.89%*

Collection-20 0.2817 0.2920 0.3166
% Diff. -1.47% +0.97%* +1.51%

Collection-100 0.2735 0.2761 0.3000
% Diff. -4.34% -4.53% -3.82%

05 Non-gene

Stop Word List TFIDF KL KL-FB

No 0.1607 0.1964 0.2385

Pubmed (132) 0.1594 0.1852 0.2296
% Diff. -0.81% -5.70% -3.73%

Collection-5 0.1608 0.1942 0.2490
% Diff. +0.06% -1.12%* +4.40%

Collection-10 0.1609 0.1932 0.2344
% Diff. +0.12% -1.63% -1.72%

Collection-20 0.1508 0.1730 0.2199
% Diff. -6.16% -11.91%* -7.80%

Collection-100 0.1392 0.1497 0.1874
% Diff. -13.38%* -23.78%* -21.43%*

stemmer is the best to use for the verbose queries.

5.3.2 Stop Word Removal

In this section, we compare the two stop word removal methods. Method one uses the

PubMed stop word list, which consists of 132 common English words. Method two uses

a collection-based stop word list, i.e. the most frequent k words in the same document

collection for retrieval. We use different values of k to see how this cutoff number affects the

performance. Table 11 shows the performance on each query set before and after stop word

24

removal. The “% Diff.” rows show the relative difference brought by removing a certain

number of stop words. Asterisks indicate statistically significant differences. We can see

that stop word removal either does not improve the performance, or only slightly improves

the performance. When we use collection-based stop word list, it is also hard to decide the

cutoff number k. We thus conclude that in general we should not apply stop word removal

for biomedical information retrieval, simply because we do not know when it will help.

5.4 Improvement Summary

From the above comparisons, we can draw the following conclusions. First, we can safely

remove those non-functional characters as defined in Section 3.1. Second, BP1 is the best

set of break points to use for break point normalization. Third, for keyword symbol queries,

J-Norm is the most effective break point normalization method, and for keyword name

queries and verbose queries, S-Norm is the most effective normalization method. Fourth,

Greek alphabet normalization in general is not effective except when J-Norm is used for the

keyword symbol queries. And last, for verbose queries, we should perform stemming.

In Table 12, we show the relative improvement brought by each tokenization heuristic

and the overall improvement over the naive method. Except for the overall improvement,

the percentage of improvement shown in the table is the improvement with respect to the

previous row. Asterisks indicate statistically significant differences. The gene queries and

the non-gene queries from 2005 are combined. Besides the MAP measure, here we also report

another performance metric, precision at 10 (Pr@10).

We can see from the table that when a set of suitable tokenization heuristics are used

for each type of queries, the MAP performance measure can improve by at least 8% for

all sets of queries. The improvement is mostly substantial for the 2004 and 2005 queries,

which are verbose queries. For 2004 queries, the improvement is mostly brought by the

removal of the non-functional characters. The reason may be that 2004 queries contain more

background English words than the 2005 queries. It therefore suggests that the more verbose

25

Table 12: The relative improvement brought by each tokenization heuristic and stemming
Keyword Symbol Queries

03 Symbol

TFIDF KL KL-FB

Method MAP Pr@10 MAP Pr@10 MAP Pr@10

Naive 0.1548 0.1320 0.1451 0.1220 0.1668 0.1420

Baseline 0.1659 0.1280 0.1523 0.1200 0.1817 0.1520
% Impr. +7.17% -3.03% +4.96% -1.64% +8.93% +7.04%

BP1 + J-Norm 0.1755 0.1420 0.1758 0.1440 0.1920 0.1640
% Impr. +5.79% +10.94% +15.43% +20.00%* +5.67% +7.89%

+G-Norm 0.1783 0.1500 0.1789 0.1520 0.1943 0.1740
% Impr. +1.60% +5.63% +1.76% +5.56% +1.19% +6.10%

Overall % Impr.
over Naive +15.18% +13.64% +23.29% +24.59%* +16.49% +22.54%*

Keyword Name Queries

03 Name

TFIDF KL KL-FB

Method MAP Pr@10 MAP Pr@10 MAP Pr@10

Naive 0.0919 0.0860 0.0833 0.0780 0.1047 0.0880

Baseline 0.0958 0.0740 0.0891 0.0680 0.0975 0.0760
% Impr. +4.24%* -13.95% +6.96%* -12.82%* -6.88% -13.64%

BP1 + S-Norm 0.1070 0.0800 0.1061 0.0920 0.1132 0.0820
% Impr. +11.69%* +8.11% +19.08% +35.29%* +16.10% +7.89%

Overall % Impr.
over Naive +16.43%* -6.98% +27.37%* +17.95% +8.12% -6.82%

Verbose Queries

04

TFIDF KL KL-FB

Method MAP Pr@10 MAP Pr@10 MAP Pr@10

Naive 0.1736 0.3960 0.1671 0.3920 0.2377 0.4240

Baseline 0.2695 0.4420 0.2687 0.4700 0.2972 0.4980
% Impr. +55.24%* +11.62%* +60.80%* +19.90%* +25.03%* +17.45%*

BP1 + J-Norm 0.3201 0.4920 0.3015 0.4860 0.3329 0.45020
% Impr. +18.78%* +11.31%* +12.21%* +3.40% +12.01%* +0.80%

+Porter 0.3297 0.5300 0.3285 0.5040 0.3357 0.4860
% Impr. +3.00% +7.72% +8.96%* +3.70% +0.84% -3.19%

Overall % Impr.
over Naive +89.92%* +33.84%* +96.59%* +28.57%* +41.23%* +14.62%*

Verbose Queries

05

TFIDF KL KL-FB

Method MAP Pr@10 MAP Pr@10 MAP Pr@10

Naive 0.1773 0.3592 0.1795 0.3653 0.2005 0.3816

Baseline 0.2039 0.3531 0.2117 0.3694 0.2334 0.3898
% Impr. +15.00%* -1.70% +17.94%* +1.12% +16.41%* +2.15%

BP1 + J-Norm 0.2543 0.3735 0.2614 0.4122 0.2887 0.4347
% Impr. +24.72%* +5.78% +23.48%* +11.59%* +23.69%* +11.52%

+Porter 0.2603 0.4082 0.2703 0.4367 0.2969 0.4571
% Impr. +2.36% +9.29% +3.40%* +5.94%* +2.84%* +5.15%

Overall % Impr.
over Naive +46.81%* +13.64% +50.58%* +19.55%* +48.08%* +19.79%*

26

a query is, i.e. the more background English words a query contains, the more important it

is to carefully remove the non-functional characters when doing tokenization. For 2003 name

queries and 2005 queries, however, the break point normalization step contributes more than

the removal of the non-functional characters to the final improvement. This suggests that for

queries containing gene names, normalization of break points is important in tokenization.

The change of Pr@10 in general follows the same pattern as that of MAP. However, when

some heuristic is applied, especially when removal of non-functional characters is applied to

the keyword queries, Pr@10 decreases while MAP increases, which is not very surprising

given that normalization of terms is generally expected to increase recall at the risk of

decreasing the precision of top-ranked documents.

We compared the best performance we obtained with the performance of the TREC

Genomics Track official runs. For TREC 2004, the best automatic run achieved a MAP of

0.4075, and the average MAP of all runs is 0.2074 [Hersh et al. 2004]. The best MAP we

obtained is 0.3357, which is better than the fifth best automatic run in TREC 2004. For

TREC 2005, the best automatic run achieved a MAP of 0.2888 [Hersh et al. 2005]. The

best MAP we obtained is 0.2969, which is higher than the best run at TREC. For TREC

2003, since we separated the gene symbols and the gene names in the queries, our results

are not comparable to those reported at TREC. This comparison shows that by using good

tokenization strategies, we can have a baseline method for biomedical information retrieval

that is competitive with the state-of-the-art systems.

6 Discussion and Conclusions

Because of the irregular forms of entity names and their lexical variants in the biomedical

text, appropriate tokenization is an important preprocessing step in biomedical information

retrieval. In this paper, we systematically evaluated a set of tokenization strategies gener-

alized from existing work, including a non-functional character removal step, a break point

27

normalization step with three possible normalization methods and three possible sets of break

points, and a Greek alphabet normalization step. We also empirically studied the effect of

stemming and stop word removal for biomedical information retrieval. Our evaluation was

conducted on all the available TREC biomedical information retrieval test collections, and

we employed two representative retrieval methods as well as a pseudo relevance feedback

method. Results from all experiments show that tokenization can significantly affect the

retrieval performance, as we expected; appropriate tokenization can improve the retrieval

performance by up to 96%.

Based on our experiment results, the general recommendations are: First, non-functional

characters should be removed from the text using a set of heuristic rules. Second, for different

types of queries, different tokenization heuristics should be applied. For queries that contain

only gene symbols, removing brackets, hyphens, slashes and underlines in the tokens and

replacing Greek letters with their Latin equivalents are useful. For queries that contain only

full gene names and for verbose queries that also contain English words, replacing brackets,

hyphens, slashes and underlines with spaces should be used. Numerical characters should

not be separated from alphabetical characters. Third, for verbose queries, stemming can be

used to further improve the performance. Finally, stop word removal in general should not

be performed to avoid the risk of hurting the performance.

Our study still has some limitations. One limitation is that not all text collections

we use are well suited for this evaluation. In particular, we are aware that the relevance

judgments for the TREC 2003 Genomics Track data set were automatically generated from

GeneRIF [Hersh et al. 2003], which are incomplete; some relevant documents are not in-

cluded in the relevance judgments. This problem with the data clearly may affect our eval-

uation, and the conclusions we draw from the keyword queries, which are all from TREC

2003, may need further testing.

It is hard, if not impossible, to enumerate all the possible tokenization strategies. Our

philosophy has been to take a “bottom-up” approach and systematically enumerate the most

28

basic tokenization strategies, with the goal being to develop a set of effective, but conservative

tokenization strategies. However, there are still some other tokenization strategies that we

did not include in our evaluation. For example, we did not consider the option of not

performing case normalization. In biomedical text, sometimes the same string may convey

different meanings when it is capitalized and when it is all in lower case. However, we

believe that such cases are not common, and if we do not perform case normalization, the

improvement we gain for these special cases is likely to be outweighed by the decrement

resulted from other cases where case normalization is harmful. Nevertheless, we should test

this option in our future work. Another strategy that we did not try is to combine some

adjacent words into single tokens. For example, “MIP 1” may be transformed into “MIP-1”

with this strategy, and hence be matched with “MIP-1”. We did not test this strategy for

two reasons. (1) One of our break point normalization methods, S-Norm, already addresses

the same problem in a different way. “MIP 1” and “MIP-1” will both be transformed into

“MIP 1” under S-Norm, and thus be matched. (2) It is hard to define a set of reasonable

rules to combine adjacent tokens without compromising our philosophy of being conservative

as this heuristic may affect term frequencies and document lengths in an unpredictable way.

However, it would still be interesting to further explore this heuristic in the line of Song [2003].

Acknowledgments

This work was in part supported by the National Science Foundation under award numbers

0425852 and 0428472.

References

[Ando et al. 2005] Ando, R. K., Dredze, M., & Zhang, T. (2005). TREC 2005 genomics track

experiments at IBM Watson. In Proceedings of the Fourteenth Text REtrieval Conference

(TREC 2005).

29

[Buttcher et al. 2004] Buttcher, S., Clarke, C. L. A., & Cormack, G. V. (2004). Domain-

specific synonym expansion and validation for biomedical information retrieval (MultiText

experiments for TREC 2004). In Proceedings of the Thirteenth Text REtrieval Conference

(TREC 2004).

[Carpenter 2004] Carpenter, B. (2004). Phrasal queries with LingPipe and Lucene: ad hoc

genomics text retrieval. In Proceedings of Thirteenth Text REtrieval Conference (TREC

2004).

[Crangle et al. 2004] Crangle, C., Zbyslaw, A., Cherry, J. M., & Hong, E. L. (2004). Concept

extraction and synonym management for biomedical information retrieval. In Proceedings

of the Thirteenth Text REtrieval Conference (TREC 2004).

[Dayanik et al. 2003] Dayanik, A., Nevill-Manning, C. G., & Oughtred, R. (2003). Partition-

ing a graph of sequences, structures and abstracts for information retrieval. In Proceedings

of the Twelfth Text REtreival Conference (TREC 2003).

[Fang et al. 2004] Fang, H., Tao, T., & Zhai, C. (2004). A formal study of information re-

trieval heuristics. In Proceedings of the 27th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (pp. 49–56).

[Fujita 2004] Fujita, S. (2004). Revisiting again document length hypotheses TREC-2004

genomics track experiments at Patolis. In Proceedings of the Thirteenth Text REtrieval

Conference (TREC 2004).

[Harman 1991] Harman, D. (1991). How effective is suffixing? Journal of the American

Society for Information Science, 42(1), 7–15.

[Hersh et al. 2003] Hersh, W. R., & Bhuptiraju, R. T. (2003) TREC genomics track

overview. In Proceedings of the Twelvth Text REtrieval Conference (TREC 2003).

30

[Hersh et al. 2004] Hersh, W. R., Bhuptiraju, R. T., Ross, L., Johnson, P., Cohen, A. M.,

& Kraemer, D. F. (2004) TREC 2004 genomics track overview. In Proceedings of the

Thirteenth Text REtrieval Conference (TREC 2004).

[Hersh et al. 2005] Hersh, W., Cohen, A., Yang, J., Bhuptiraju, R. T., Roberts, P., & Hearst,

M. (2005) TREC 2005 genomics track overview. In Proceedings of the Fourteenth Text

REtrieval Conference (TREC 2005).

[Huang et al. 2005] Huang, X., Zhong, M., & Si, L. (2005). York University at TREC 2005:

genomics track. In Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005).

[Lafferty and Zhai 2001] Lafferty, J., & Zhai, C. (2001). Document language models, query

models, and risk minimization for information retrieval. In Proceedings of the 24th An-

nual International ACM SIGIR Conference on Research and Development in Information

Retrieval (pp. 111–119).

[Lovins 1968] Lovins, J. (1968). Development of a stemming algorithm. Mechanical Trans-

lation and Computational Linguistics, 11, 22–31.

[Pirkola and Leppanen 2003] Pirkola, A., & Leppanen, E. (2003) TREC 2003 genomics track

experiments at UTA. In Proceedings of the Twelfth Text REtrieval Conference (TREC

2003).

[Porter 1980] Porter, M. F. (1997). An algorithm for suffix stripping. Program, 14(3),

130–137.

[Savoy et al. 2003] Savoy, J., Rasolofo, Y., & Perret, L. (2003). Report on the TREC 2003

experiment: genomic and web searches. In Proceedings of the Twelfth Text REtrieval

Conference (TREC 2003).

31

[Song et al. 2003] Song, Y-I., Han, K-S., Seo, H-C., Kim, S-B., & Rim, H-C. (2003). Biomed-

ical text retrieval system at Korea University. In Proceedings of the Twelfth Text REtrieval

Conference (TREC 2003).

[Tomlinson 2003] Tomlinson, S. (2003). Robust, web and genomics retrieval with Humming-

bird SearchServer at TREC 2003. In Poceedings of the Twelfth Text REtrieval Conference

(TREC 2003).

[Zhai 2001a] Zhai, C. (2001). Notes on the Lemur TFIDF model.

http://www.cs.cmu.edu/ lemur/1.1/tfidf.ps.

[Zhai and Lafferty 2001b] Zhai, C., & Lafferty, J. (2001). Model-based feedback in the

language modeling approach to information retrieval. In Proceedings of the Tenth Inter-

national Conference on Information and Knowledge Management (pp. 403–410).

32

