
Improving One-Class Collaborative Filtering by
Incorporating Rich User Information

Yanen Li
∗

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
yanenli2@illinois.edu

Jia Hu
Department of Computer Science and

Engineering
Texas A&M University

College Station, TX, 77840
vickyhujia@hotmail.com

Chengxiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

czhai@cs.illinois.edu

Ye Chen
Microsoft Corporation

1065 La Avenida, Mountain View, CA 94043
yec@microsoft.com

ABSTRACT
One-Class Collaborative Filtering (OCCF) is an emerging
setup in collaborative filtering in which only positive exam-
ples or implicit feedback can be observed. Compared with
the traditional collaborative filtering setting where the data
has ratings, OCCF is more realistic in many scenarios when
no ratings are available. In this paper, we propose to im-
prove OCCF accuracy by exploiting the rich user informa-
tion that is often naturally available in community-based
interactive information systems, including a user’s search
query history, purchasing and browsing activities. We pro-
pose two ways to incorporate such user information into the
OCCF models: one is to linearly combine scores from dif-
ferent sources and the other is to embed user information
into collaborative filtering. Experimental results on a large-
scale retail data set from a major e-commerce company show
that the proposed methods are effective and can improve the
performance of the One-Class Collaborative Filtering over
baseline methods through leveraging rich user information.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Filtering

General Terms
Algorithms, Performance, Experimentation

∗Work done as a summer intern at eBay Research Labs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Keywords
Recommender Systems, One-Class Collaborative Filtering,
Rich User Information

1. INTRODUCTION
A Recommender System analyzes users’ past behavior

and predicts user’s preference to improve user’s satisfaction.
Originally introduced by Goldberg et al. [8], Collaborative
Filtering (CF) approaches are the most popular methods in
recommender systems and have been extensively studied [1].
One of the most famous examples is the Netflix Prize prob-
lem, in which the most successful methods reported are CF
models. However, most CF methods are focused on data
sets with explicit ratings. Such explicit ratings are hard to
collect in many applications because of the intensive user
involvement. Recently, One-Class Collaborative Filtering
(OCCF) has emerged as a very interesting problem setup
where only binary data of the user’s interaction can be ob-
served through implicit feedback [16]. OCCF reflects a more
realistic scenario. In fact, most of the real life recommen-
dations with implicit user feedback can be considered as an
OCCF problem. Famous examples include Amazon’s prod-
uct recommendation, web page bookmarking and the KDD
cup 2007 “Who rated What” problem on movie recommen-
dation.

In the OCCF problem setup, data is usually extremely
sparse and unbalanced: only a small part of data is labeled
as positive examples. So far, research on OCCF has focused
on how to best model the missing examples [16, 15, 9, 20].
However, the information about users in these studies has
been restricted to implicit judgments on items only. In many
applications, we naturally have much more user information
that can be leveraged. For example, in most interactive
systems where users can search for items, we would natu-
rally have a search log with users’ queries and clickthroughs
on search result. In a modern online market-place, there
are several types of data reflecting the user-item interac-
tion which can be utilized, such as search logs, item click-
throughs, user’s transaction history and so on. To the best

of our knowledge, in the setting of One-Class Collaborative
Filtering, little has been studied in exploring how to exploit
the rich user information to overcome the sparsity problem
of the data and improve the recommendation performance.

In this paper we propose two strategies of incorporating
rich user information to improve the OCCF performance.
The first strategy is to use different sources of user infor-
mation as independent evidence to score items, and linearly
combine the scores with regular collaborative filtering scores
to make the final decision. The second is to tightly embed
the user information into a collaborative filtering model.
Specifically, we extend the User-based CF baseline model,
by replacing the user-user similarity function with a content-
based similarity function or replacing the sparse transaction
matrix with a denser clickthrough data matrix. We extend
the Matrix Factorization baseline models by replacing the
global weighting scheme with the content-based dissimilar-
ity function. Experiments on a large-scale dataset from a
major online market-place show that the proposed methods
can effectively improve the recommendation performance.
And the analysis on extreme cases indicates that the com-
plementary nature of the content-based features and collab-
orative filtering could help to ease the cold-start problem in
recommendation.

The paper is organized as follows: We first summarize the
related work in Section 2. In section 3 and 4 we define our
problem setup, and introduce types of user information we
could exploit. In Section 5 we propose major strategies for
incorporating rich user information into the Neighbor-based
CF. In Section 6 and 7 we present experimental results on
a large-scale data set, and discuss which user information
performs better and when the best result can be achieved.

2. RELATED WORK
Recommendation methods can be classified as Content-

based recommendation [3]; Collaborative filtering [8], and
Hybrid approaches [6, 17, 18]. The Content-based approaches
make the prediction based on the similarity between the item
and the user’s content profile. However, it needs efforts to
collect and extract knowledge from the content. Collabo-
rative Filtering (CF) approaches have been successfully ap-
plied to several real world problems, such as Amazon’s prod-
uct recommendation [14], Netflix’s movie recommendation
[13]. CF methods are popular because it does not require
domain knowledge, and can discover interesting associations
that the Content-based methods couldn’t. However, CF suf-
fers from the Cold Start problem, in which few ratings can
be obtained when a new item enters to the system. The
Hybrid approaches try to combine the Content-based and
CF approaches to overcome their limitations. For example,
Claypool et al. [6] compute CF and Content-based compo-
nents separately and combine their ratings linearly for the
online news recommendation. Popescul, Schein et al. [17, 18]
propose to unify CF and Content-based evidence by proba-
bilistic mixture of aspects. But this kind of mixture mod-
els is prone to overfitting. Most of the methods mentioned
above deal with explicit user ratings, whereas the focus of
this paper is on implicit user feedback, which is easier to
collect, and common in modern online information systems.
In addition, although methods proposed in this paper have
similarity with the Hybrid methods, most of the previous

Hybrid approaches do not exploit the user information as
rich as ours.

In the One-Class Collaborative Filtering setup, we only
have positive examples, and usually the portion of un-labeled
examples is large, which leads to an extremely sparse data
matrix. Instead of simply ignoring all missing examples,
recent researches focus on how to take advantage of the
missing examples. Pan et al. [16, 15] propose to employ
weighted matrix factorization approximation and negative
example sampling to improve the result. The basic idea
in that work is to treat all unknown examples as negative
examples, and assign weights to quantify the relative contri-
bution of these examples. Sindhwani et al. [20] jointly learn
the non-negative matrix factorization model while searching
for the best classification of the labels in missing data. Our
work emphasizes on improving OCCF by incorporating rich
user information. Despite its importance, none of the ex-
isting literature has addressed this problem seriously, partly
due to the difficulty of collecting large-scale user informa-
tion.

On the other hand, rich user information, such as search
logs and clickthrough data has been reported to be able to
improve the performance of personalized search in the field
of information retrieval [10, 2, 19, 22]. Joachims [10] pro-
poses to improve the retrieval quality of search engines by
learning from the clickthrough data. Shen et al. [19] propose
a decision-theoretic framework for optimizing search perfor-
mance via user feedback. Tan et al. [22] integrate user search
history into the query language model to improve the perfor-
mance of language modeling approach. Agichtein et al. [2]
examine the effectiveness of user behavior using a popular
search engine, and demonstrate that web search ranking can
be improved by incorporating such behavior. Personalized
search and recommendation are similar but different in that
search focuses on satisfying users’ momentary information
needs with regard to specific queries, while recommendation
systems try to provide users with interesting contents based
on their preferences.

3. ONECLASS COLLABORATIVE FILTER-
ING AND BASELINE MODELS

In this section, we first define the problem of OCCF and
then introduce two representative approaches to it, which
we will extend later by incorporating user information.

The goal of One-Class Collaborative Filtering is to predict
the preference of a user on available items given that there
are only positive implicit feedback examples in the data set.
In this paper, we are interested in predicting users’ future
purchase preference based on the historical behavior of the
users. Formally, let

• U = {u1, u2, ..., um} be a group of users,

• I = {i1, i2, ..., in} be a set of items,

• R = (Rij)m×n be the user-item preference matrix,
where Rij ∈ {0, 1}.

The value of an element in R is 1 in a positive purchase
record between some u and i, otherwise its corresponding

element value in R is either 0 or 1. We aim at predict-
ing a sorted list of top-k items L = (L1, L2, ...Lk), Li ∈ I
which match the user’s actual purchased items. We mea-
sure the prediction performance by Mean Average Precision
and Mean Percentage Ranking, which will be described in
detail in Section 6.2.

3.1 Neighbor-based Collaborative Filtering
Neighbor-based collaborative filtering systems have been

introduced one decade ago and still are the most popular
models for recommender systems. Neighbor-based CF sys-
tems can be classified in user-based and item-based systems
depending on the way past preference judgments are used.
A user- based system makes new predictions by first finding
users with similar ratings to an active user and then takes
a weighted combination of their ratings. More formally let
u be the active user and i an item which is not rated by u.
Then the predicted rating of u to i, R(u, i) is obtained by

R(u, i) = r̄u +

P
a∈U (ra,i − r̄a)wu,aP

a∈U wu,a
(1)

where ra,i is the rating of user a for item i, r̄u and r̄a are
the mean ratings of users u and a and wu,a is the similarity
weight between users u and a. On the other hand, in an
item-based system predictions are made by finding similarly
rated items and then calculating a weighted combination of
their ratings:

R(u, i) = r̄i +

P
k∈I(ru,k − r̄k)wi,kP

k∈I wi,k
(2)

where now r̄i is the mean rating of item i and wi,k is the
similarity weight between item i and k. Finding neighbors
by using item-based similarity has computational advantage
since in a typical CF setting, item space is more stable and
bounded than user space. However, in a long-tail and highly
dynamic market-place, this difference becomes less obvious.
For example, the company from which we collect the data
has 200M active users and 20M new listings added every
month. Moreover, meta-data usually is available for users.
Therefore, we decided to choose the User-based CF as our
baseline model, which we call the UCF model.

3.2 Matrix Factorization for Collaborative Fil-
tering

Matrix Factorization Models have been successfully ap-
plied to the Netflix movie recommendation [13]. It is su-
perior to the neighbor-based models in reducing the Root
Mean Squared Error (RMSE) where the explicit ratings of
items are available. The basic idea of Matrix Factorization
for explicit ratings is that the rating matrix R can be ap-
proximated by decomposing R into two low-rank matrices
X and Y . For each Rij :

Rij ≈ XiY
T

j , (3)

Where X = {X1, X2, ..., Xm}T is a m by k matrix in which
the i-th row Xi is a k-dimension vector representing a user’s
preference for latent factors. And Y = {Y1, Y2, ..., Yn}T is
a n by k matrix where the j-th row Yj is a k-dimension
vector representing an item’s affiliation with latent factors.
To avoid overfitting, we usually find X and Y with smaller
values by Tikhonov-regularization [23], that is equivalent to

solving the following unconstrained optimization problem:

Argmin
X,Y

n
‖R − XY T ‖2

F + λ(‖X‖2
F + ‖Y ‖2

F)
o

(4)

where || · ||F is the Frobenius Norm of a matrix (Euclidean
Norm) and λ is a coefficient controlling how much regular-
ization is needed. The user-item matrix R is usually very
sparse with a lot of missing value. In this case, there is
no exact solution for X and Y . Alternating Least Squares
(ALS)[7] is an effective iterative algorithm to solve the opti-
mization problem. The ALS algorithm works as follows: it
first assigns random values to matrix Y , and updates X by
minimizing the Loss function defined by Eq. (4):

X = RY (Y T Y + λI)−1, (5)

then fix X, update Y according to

Y = RT X(XT X + λI)−1, (6)

the algorithm iterates these steps until X and Y converge
to a local optimum.

In the One-Class Collaborative Filtering setting, there are
several strategies to adopt the Matrix Factorization frame-
work. One way is to simply treat all missing values in R
as negative examples (AMAN). This method transforms the
OCCF to the regular Matrix Factorization setting where the
response variables only take 0 or 1 in value. In this case, the
above algorithm can be directly applied to the OCCF prob-
lem. However, this strategy doesn’t fully utilize the missing
examples that would be positive ones. A better method pro-
posed in [16] is to treat all missing values as negative, but
with weights controlling their relative contribution to the
loss function (wAMAN):

Lw(X, Y) =
X

i,j

Wij

“
(Rij − XiY

T
j)2 + λ(‖Xi‖2

F + ‖Yj‖2
F)
”

(7)
By minimizing Lx(X, Y), X and Y can be solved via

weighted low-rank approximation with ALS [21]. In this
paper we include the AMAN method and wAMAN method
as our two baselines in the Matrix Factorization methods. In
wAMAN, we adopt the global weighting method for assign-
ing the weights. We will elaborate two strategies of incorpo-
rating rich user information into the AMAN and wAMAN
methods in Section 5.

4. REPRESENTATIONOFUSER INFORMA-
TION

The online market-place records a large amount of user
information in the interaction of its users. Such informa-
tion, usually as a kind of implicit feedback, can be exploited
to infer the user’s purchase preference. This information
includes search query logs, item clickthroughs, and trans-
action history. In this paper we sought to explore different
ways to utilize these kinds of user information to improve
the One-Class Collaborative Filtering problem.

4.1 Representing a User’s Search Profile
Search keywords strongly imply a user’s purchase pref-

erence. However, the search queries are usually short and
compact, and vary by time period as the user’s purchase in-
terest shifts by time. To construct the search profile for user

u, let Su be the set of keywords issued by u over a fixed pe-
riod of time. It is very natural to represent the user’s search
profile as a vector space model as follows:

Ss(u) = ((wu1, cu1), (wu2, cu2), ..., (wui, cui), ...) (8)

Where wui are keywords, cui are TFIDF weightings, and
cu1 ≥ cu2 ≥ cu3.... By truncating Ss(u) after the first n
words, we create a signature of the n most popular words in
the vocabulary of u. A limitation of this signature is that
common words (e.g. NEW and NWT in the cellphone cate-
gory) tend to appear in many profiles without contributing
to the descriptive power of any of them. We use a standard
weighting strategy to promote words that are descriptive of
a particular user. For a given word wui we let

idf(wui) = log

„
|U |

|wui ∈ Vj |

«
, (9)

where U is the set of all users and |wui ∈ Vj | is the number
of users whose vocabularies Vj contain wui. We then let

cui = tf(wui) × idf(wui) (10)

where tf(wui) = |wui ∈ Su|/|Su| is the term frequency of
word wui in the concatenated search queries of Su.

4.2 Representing a User’s Purchase and Brows-
ing Profile

Besides the search query history, we can also assign pro-
files to a user according to his purchasing and item browsing
history. The purchase history is recorded in the transaction
logs and browing history is captured in the web behavioral
logs. We argue that the items purchased by a user provide
evidence for the user’s preference for these items. In the
context of our purchasing and clickthrough data, the most
reliable and content-rich descriptors of an item lie in its title
written by the seller. The search engine indexes items solely
using these attributes, and since the majority of the pur-
chased items are found using content search, the title of the
item provides a significant source of data about the users’
preference. Similar to the search keywords, we use word vec-
tor to represent a user, with an important difference that we
just use the word count in computing c̄ui instead of using
term frequency:

Sp(u), St(u) = ((wu1, c̄u1), (wu2, c̄u2), ..., (wui, c̄ui), ...)
(11)

where Sp(u) is calculated by the user’s purchase history
while St(u) by the browsing history, and

c̄ui = |wui ∈ Su|× idf(wui) (12)

The reasons for this treatment are as follows:

1. We want the signature to reflect the number of times
an item was purchased by user u. Thus, a user who
bought 10 items with identical titles, each containing
one word i-pod should have a different signature from
a user who bought only one item with the same title,
although word frequencies are the same in these cases.

2. Since the titles are written by sellers rather than buy-
ers, and the titles are rather compact (title length is
limited to 55 characters), there is little danger of giv-
ing bias to longer titles. On the other hand, our weight
will give a bias to words which appear in many titles,
which is precisely our goal.

4.3 Similarity Measures
Our main idea of leveraging rich user information is to use

the profiles of users as extra evidence for computing similar-
ity of users as well as similarity between users and items.
We can then combine these similarity values with a collab-
orative filtering algorithm to improve prediction accuracy.
Here we define two similarity metrics: similarity between
two users, and similarity between a user and an item.

• Similarity between users: Once we formulate the
vector representation of user’s profile, we can measure
the similarity between users x and y using the cosine
similarity:

sim(x, y) = cos(Sx, Sy) =
Sx · Sy

||Sx||2 × ||Sy ||2
(13)

• Similarity between user and item: Similarly, we
can define a content profile for an item i as:

S(i) = ((wi1, ĉi1), (wi2, ĉi2), ..., (wik, ĉik), ...) .

where ĉik is the number of times a word wik appears
in the item description. Then we define the similarity
between user u and item i by

sim(u, i) = cos(Su, Si) =
Su · Si

||Su||2 × ||Si||2
(14)

where Su ∈ {Ss
u, Sp

u, St
u}.

5. INCORPORATING RICH USER INFOR-
MATION

Our goal is to produce a ranked list of items with high to
low user preference. There are many strategies for combin-
ing all sources of information and output a ranking. Here
we propose two methods.

5.1 User Information as Independent Evidence
The first strategy we employ is to treat all kinds of user

information as independent evidence, and linearly combine
their scores to produce a final ranking score. Given a user
u and an item i, let F ucf

ui be the ranking score obtained by
the User-based Collaborative Filtering (UCF) method de-
fined by Eq. (1). And let X1

ui, X
2
ui, ..., X

n
ui be the score from

different information source (e.g. Xui = sim(u, i), the con-
tent similarity between Su and i, where Su ∈ {Ss

u, Sp
u, St

u}).
Then the final score for item i is:

Yui = w0
ui ·F ucf

ui +w1
ui ·X1

ui +w2
ui ·X2

ui + ...+wn
ui ·Xn

ui, (15)

the wights w0
ui, w

1
ui, ... is trained using Gradient Descent un-

der least square error to the ground truth in training dataset.
We name this type of methods as UCF+Features

The same strategy can be applied to the Matrix Factoriza-
tion baselines (AMAN and wAMAN). Once we obtain the
X and Y matrix (please refer to Section 3.2), we can assign
a score of user u to item i according to Eq. (3):

F AMAN
ui = XAMAN

u × (Y AMAN
i)T , (16)

and

F wAMAN
ui = XwAMAN

u × (Y wAMAN
i)T , (17)

then use Eq. (15) to output a final score. We refer this type
of methods to MF+Features

5.2 Embedding User Information into Collab-
orative Filtering

Besides treating the user information as independent evi-
dence, we can also directly embed this information into the
User-based Collaborative Filtering or the Matrix Factoriza-
tion framework. For the UCF framework, remember in Eq.
(1), the user-user similarity can be an arbitrary function. So
we can replace it with the similarity between users’ profiles
defined in Eq. (13). In addition, the user-item matrix itself
can be replaced by a denser matrix in the clickthrough data.
We call this kind of embedding methods UCFWithFeatures.
For the MF framework, AMAN and wAMAN are two base-
line methods representing the state of the art of the MF
approach. Similar to wAMAN, we also treat all missing ex-
amples as negative examples. But instead of using a global
weighting scheme, a better way for assigning the weight for
each negative example is to look at the similarity between
the user and the item: the more similar they are, the less
weight we should assign to that negative example. And this
similarity is measured by the content features. Hence we use

Dij = 1 − sim(i, j) (18)

for assigning the weights to the negative examples, and re-
maining the weights for positive examples to be 1. Where
sim(i, j) is defined by Eq. (13). With this important sub-
stitution, we then aim to find a solution by minimizing the
following loss function:

Ld(X, Y) =
X

i,j

Dij

“
(Rij − XiY

T
j)2 + λ(‖Xi‖2

F + ‖Yj‖2
F)
”

(19)
We refer to these methods as MFWithFeatures. The low-

rank matrices X, Y can be solved by weighted ALS as fol-
lows: In order to solve X, we first fix Y , and take derivatives
of Ld(X, Y) with respect to each entry of X,

1
2
∂Ld(X, Y)

∂Xir
=
X

j

Dij(XiY
T

j − Rij)Yjr+

λ(
X

j

Dij)Xir, ∀1 ≤ i ≤ m, 1 ≤ r ≤ k

Then for the i-th row in X, we have

1
2

∂Ld(X, Y)

∂Xi
=

1
2

„
∂Ld(X, Y)

∂Xi1
, ...,

∂Ld(X, Y)

∂Xik

«

= Xi

Y T D̃iY + λ

X

j

DijI

!!
− RiD̃iY

(20)

where D̃i ∈ Rn×n is a diagonal matrix with entries of i-th
row in D on the diagonal, I is a k × k identity matrix. Let
the partial derivative 1

2
∂Ld(X,Y)

∂Xi
= 0, we get

Xi = RiD̃iY (Y T D̃iY + λ(
X

j

Dij)I)−1,∀1 ≤ i ≤ m (21)

Similarly, by fixing X and taking derivative of Ld(X, Y)
with respect to each entry of Y , we have

Yj = RT
j
#DjX(XT #DjX + λ(

X

i

Dij)I)−1,∀1 ≤ j ≤ n (22)

where #Dj ∈ Rm×m is a diagonal matrix with entries of j-th
column in D on the diagonal. The algorithm for estimating

the low-rank matrices X, Y is described in Algorithm 1.
For the runtime performance, since in each iteration it takes
time O(k2mn) to update the X (or Y), the computational
complexity of running Algorithm 1 is O(Nitrk

2mn). Where
m, n is the number of users and items, repectively, k is
the rank of matrix X and Y , and Nitr is the number of
iterations.

Algorithm 1 Weighted ALS for AMAN

Require: user-item matrix R, weight matrix D,
latent factors rank k

Ensure: low rank matrices X and Y .

1: Initialize Yjr:
2: Yjr := RandNum,∀1 ≤ j ≤ n, 1 ≤ r ≤ k
3: Initialize Dij ,∀1 ≤ i ≤ m, 1 ≤ j ≤ n:
4: if Rij = 0 then
5: Dij := 1 − sim(i, j)
6: else
7: Dij = 1
8: end if
9: repeat

10: Xi := RiD̃iY (Y T D̃iY + λ(
P

j Dij)I)−1,∀1 ≤ i ≤ m

11: Yj := RT
j
#DjX(XT #DjX + λ(

P
i Dij)I)−1,∀1 ≤ j ≤ n

12: until X, Y converge
13: return X, Y

5.3 Baseline Methods and Models with Rich
User Infomation

Here we fully describe the baseline models and the ad-
vanced models incorporating rich user information. We first
introduce 6 baseline models, which generate recommenda-
tions from different modeling aspects. 4 of these models
are considered as weak baselines (PopRank, SchKW, CT,
AMAN), and the remaining 2 are considered as strong base-
lines (UCF and wAMAN).

• PopRank: The first method is sorting all items based
on their popularity, so that the top recommended items
are the most popular one in terms of the number of
times bought by users. This simple measure is sup-
posed to have reasonable performance, as people tend
to concentrate on few popular items such as IPhone.
We use it as a weak baseline model.

• SchKW: In order to investigate whether users’ search
keyword history helps improving the prediction per-
formance, we need to know the performance of using
search keyword history alone. This is a Content-based
model which computes ranked list of items based on
how similar of the item title description to the user’s
search keyword profile, as defined in Eq. (14)

• CT: Similar to search keyword history, a typical e-
commerce system would have recorded the Clickthroughs
of its users. The CT model is to use the content, i.e.
title of the browsing items, to compute the ranked list
of items based on the similarity between the title de-
scription of a predicted item and the user’s browsing
profile, as defined in Eq. (14).

• AMAN: AMAN stands for All Missing as Negative
example. It is a weak baseline model for the OCCF

problem setting. In AMAN, all non-positive examples
are assigned to 0, and the Alternating Least Squares
optimization procedure is adopted to solve the factor-
ization. An ordered list of items can be obtained by
sorting the scores calculated by multiplying two low-
rank matrices.

• UCF: Neighbor-based Collaborative Filtering is one of
the most popular and successful models for recommen-
dation. Here we choose the User-based Collaborative
Filter described in Sec. 2 as our strong baseline model.
We explored several variants of this scheme, such as the
number of neighbors, and found that the performance
is not sensitive to the large number of neighbors. So
we decide using the most common form of the User-
based Collaborative Filtering (UCF), with 30 nearest
neighbors. More neighbors are also tested, but there
is no significant difference than using 30 neighbors; so
we use 30 for the sake of efficiency. The vector cosine
similarity is used as the similarity measurement.

• wAMAN: Weighted version of AMAN, as described
in Section 3.2

The following models with rich user information can be
classified by two categories: one is called UCF+Features, in
which the models are associated with the User-based Col-
laborative Filtering. The other one is called MF+ Features,
in which the models are related to Matrix Factorization. We
first list the UCF+Features models.

• UCF+SchKW: One of the major goals of this pa-
per to assess the extent to which users’ search key-
word history helps the prediction of users’ future pur-
chase behavior. As described in Sec. 3, this model
is a linear combination of the scores from the User-
based Collaborative Filtering and the Content-based
method. The Content-based method computes the
similarity between the predicted item’s title descrip-
tion and the Keywords in user’s Search History. The
optimal value of the weight w is trained on the training
(7 weeks). Parameter setting of the UCF component
is the same as the baseline UCF model.

• UCF+SchKW+CT: The clickthrough behavior is a
very valuable source of information for probing user’s
preference. This model produces a ranked list of items
by linearly combining scores from clickthrough and the
other two components listed above. We use linear re-
gression (least square error) method to obtain the op-
timal weights among these components from the train-
ing set.

• UCFWithSchKW: Besides using search keyword his-
tory as an independent source of information, users’
search keyword history can be directly embedded into
the User-based Collaborative Filtering framework. Re-
member that the similarity function between users can
be an arbitrary function; we replace the similarity func-
tion by a Content-based similarity metric between users
based on their search keyword history.

• UCFWithCT: Similarly, clickthrough data be directly
embedded into the User-based Collaborative Filter-
ing framework by replacing the sparse transactional

Table 1: Advanced Methods Summary
Methods Baseline Combination User Info

Method

UCF+SchKW UCF Linear Query
UCF+CT UCF Linear CT
UCF+SchKW+CT UCF Linear Query, CT
UCFWithSchKW UCF Embed Query
UCFWithCT UCF Embed CT
UCFWithCT+SchKW+CT UCF Embed and Query,CT

Linear
wAMAN+SchKW wAMAN Linear Query
wAMAN+CT wAMAN Linear CT
wAMAN+SchKW+CT wAMAN Linear Query,CT
wAMANWithSchKW wAMAN Embed Query
wAMANWithCT wAMAN Embed CT

user-item binary rating matrix with a denser user-item
clickthrough data matrix.

• UCFWithCT+SchKW+CT: This method is sim-
ilar to the UCF+SchKW+CT method, but different
in the user-item rating matrix used. Here we use the
clickthrough data matrix instead of the transactional
user-item matrix. The clickthrough data matrix is less
sparse and it would include many records in the trans-
actional user-item matrix: a user usually browses the
item before actually purchasing it. But the confidence
of the user’s preference on an item is lower in the click-
through data.

On the other hand, the MF+ Features category has 5 related
models as listed below. Since they are defined in a similar
way as the UCF+Features, we only briefly list them and
point out some important differences.

• wAMAN+SchKW: Linearly combining scores from
wAMAN and SchKW. Please refer to UCF+SchKW.

• wAMAN+CT: Linearly combining scores from wA-
MAN and CT. Please refer to UCF+CT.

• wAMAN+SchKW+CT: Linearly combining scores
from wAMAN and SchKW and CT. Please refer to
UCF+SchKW+CT

• wAMANWithSchKW: wAMAN with weighting scheme
replaced by SchKW. A specific weighting from user u
to item i is defined by Eq. (14). Solution can be ob-
tained by Algorithm 1.

• wAMANWithCT: Similar to wAMANWithSchKW,
but instead using CT for deriving the weighting scheme.

We summarize important aspects of all advanced models
in Table 1.

6. EXPERIMENTAL SETUP

6.1 Datasets
We test our proposed method on a large-scale dataset from

the market-place of a major e-commerce company. The data
set includes transactions, user search logs and clickthrough
records in the CELLPHONE & ACCESSORIES catalog in

0 10 20 30 40 50
0

2

4

6

8

10
x 105

Purchased Items

U

se
rs

Figure 1: Histogram of the training set

a period of 9 weeks. We split the data into three parts, the
first 7 weeks of data is used for training, the 8-th week’s
data a validation set, and the 9-th week’s data is for test-
ing. We first remove the users who have no transactions
in either of the data sets, and remove the users who have
no search queries in the training set. Finally there are 1.29
million users and 1.85 million items in the training and val-
idation set, and 17,135 users and 274,830 items in the test
set. Please note that the data sets are very sparse, with
about 49.3% of the users only bought one item in the train-
ing set. The items in the datasets are transformed to unique
items by a generative clustering method, resulting in 20,409
unique items (we use the term item briefly in the rest of
the paper). Figure 1 shows some statistics of the dataset.
The reasons and process of doing the unique item mapping
are as follows: for an online marketplace featuring long-
tail items, the life span of the item is ephemeral, so is the
user-item relationship. This makes the user-item matrix of
transactional counts extremely sparse (order of magnitude
sparser than Netflix data), thus precluding the application
of some traditional CF approaches such as SVD-based low-
rank projection. To address this issue, Chen and Canny [5]
have proposed a generative clustering algorithm mapping
ephemeral items to more persistent latent product concepts.
Specifically, the clustering algorithm uses product-to-item
likelihood as the distance metric, where an item title is as-
sumed to be generated from a latent product, word-by-word
or property- by-property, following appropriate parametric
distributions.

6.2 Evaluation Metrics
We use two standard measures to evaluate the prediction

accuracy: Mean Average Precision, and Mean Percentage
Ranking.

1. Mean Average Precision (MAP): Mean Average
Precision accesses the overall precision performance
based on precision at different recall levels. It calcu-
lates the mean of the average precision (AP) over all
users in the test set. AP for user u is computed at the

point of each of the preferred items in the ranked list:

APu =

PN
i=1 prec(i) × pref(i)

of purchased items
(23)

where prec(i) is the precision at ranked position i,
pref(i) is a binary preference function at position i.
The MAP is the mean of APu over all users.

2. Mean Percentage Ranking (MPR): Because of
the nature of the One Class Recommendation, we don’t
have reliable feedback for user’s preference for items.
A user who hasn’t bought an item doesn’t necessary
mean he doesn’t like it. On the other hand, due to
the money commitment, the purchase behavior is a
strong indication of user preference over the purchased
item. Here we use another recall-oriented metric called
Mean Percentage Ranking, which is used in [11] and
[4], to measure the user satisfaction of items in an
ordered list. Let rankui be the percentile-ranking of
item i within the ordered list of all items for user u.
rankui = 0% means that item i is most preferred by
user u. The higher ranking (until rankui = 100% is
reached) indicates that i is predicted to be less desir-
able for user u. The way of calculating the MPR in our
experiment setup is as the following: for each actual
pair of a user and the purchased item, we randomly
select 1000 other items, and produce an ordered list of
these items. Then, we keep track of where the actual
purchased item is ranked, and calculate the expected
percentage ranking for all users and items:

MPR =

P
u,i rui × rankuiP

u,i rui
(24)

Where rui is a binary variable indicating whether user
u purchases item i. It is expected that a randomly
produced list would have a MPR of around 50%.

7. RESULTS AND DISCUSSION

7.1 Results On the UCF Based Models
We first analyze the effect of treating user information as

independent evidence to the User-based CF model. Table 2
indicates that Search Keywords as independent information
(UCF+SchKW) improves the result significantly, the abso-
lute MAP gain over the UCF baseline reaches 0.0243, and
the MPR gain over UCF is 6.5%. Compared to the Search
Keywords, the Clickthrough history (UCF+CT) only out-
performs the UCF slightly, because the content in the item
title might not be as informative as the Search Keywords,
or people tend to not purchase duplicated items. In addition,
combining three sources of information (UCF+SchKW+CT)
gets the best result, suggesting the effectiveness of the in-
clusion of rich user information.

Table 3 summarizes the results for embedding user infor-
mation into the UCF model. Interestingly, by only replacing
the user-item matrix with a denser Clickthrough data ma-
trix, the MAP improves by 0.0343 and the MPR by 10.4%
over the UCF model. It suggests that the extremely sparse
dataset is the major obstacle for Collaborative Filtering. On
the other hand, the way for handling other sources of infor-
mation will significantly affect the result. For example, while

Table 2: Performance of UCF+Features methods
Methods MAP Gain in MPR Gain in

UCF % UCF %

PopRank 0.0120 - 35.8 -
UCF 0.0513 - 28.5 -
SchKW 0.0486 - 31.6 -
CT 0.0302 - 30.9 -
UCF+SchKW 0.0756 0.0243 22.0 6.5
UCF+CT 0.0577 0.0064 27.0 1.5
UCF+SchKW+CT 0.0794 0.0281 20.3 8.2

Table 3: Performance of UCFWithFeatures meth-
ods

Methods MAP Gain in MPR Gain in
UCF % UCF %

PopRank 0.0120 - 35.8 -
UCF 0.0513 - 28.5 -
UCFWithSchKW 0.0501 -0.0012 31.5 -3.0
UCFWithCT 0.0856 0.0343 18.1 10.4

the Search Keywords effectively improve the result when us-
ing as independent information, it drops by 0.0012 in MAP
and 3.0% in MPR over the baseline when acting as an em-
bedded component of the UCF model: it does not alleviate
the sparsity problem of the data.

We can also see in Table 4 that adding all user information
achieves the best result over UCF baseline. But the best
MAP (0.1037) is still very low compared to other datasets.
It indicates that recommending items in a large-scale online
market-place is a very difficult problem.

7.2 Results On the MF-based Models
Table 5 and Table 6 show the MAP and MPR results

on the Matrix Factorization-based models. We try different
number of factors k from 40, 60 to 100, and find that the
performance increases as the k increases. k = 100 is chosen
in reporting the results. Firstly, the un-weighted version of
MF model AMAN performs badly in this case, suggesting
simply treating all missing examples as negative examples
without weighting does not fit for highly sparse OCCF prob-
lem. Secondly, previous studies from [16] [9] show that the
weighted MF methods perform well in the OCCF problem;
however, results in this study show that the wAMAN model
with global weighting scheme performs not as well as the
UCF model in the same test set (0.0314 vs 0.0513 in MAP
and 33.4% vs 28.5% in MPR). This result suggests that in
the MF model, it is not guaranteed to capture the relevant

Table 4: Comparison of the well-performing models
Methods MAP Gain in MPR Gain in

UCF % UCF %

UCF 0.0513 - 28.5 -
UCFWithCT 0.0856 0.0343 18.1 10.4
UCFWithCT
+SchKW 0.1022 0.0509 15.4 13.1
UCFWithCT
+SchKW+CT 0.1037 0.0524 15.0 13.5

Table 5: Performance of MF+Features methods
Methods MAP Gain in MPR Gain in

wAMAN % wAMAN
%

AMAN 0.0085 - 38.2 -
wAMAN 0.0314 - 33.4 -
SchKW 0.0486 - 31.6 -
CT 0.0302 - 30.9 -
wAMAN+SchKW 0.0583 0.0269 27.3 6.1
wAMAN+CT 0.0350 0.0036 29.0 4.4
wAMAN 0.0621 0.0307 23.3 10.1
+SchKW+CT

Table 6: Performance of MFWithFeatures methods
Methods MAP Gain in MPR Gain in

wAMAN % wAMAN
%

AMAN 0.0085 - 38.2 -
wAMAN 0.0314 - 33.4 -
wAMANWithSchKW 0.0607 0.0293 25.5 7.9
wAMANWithCT 0.0577 0.0263 28.1 5.3

information between users and items by simply assigning
a uniform weight in the negative examples; it might vary
from dataset to dataset. Whereas the UCF model could
perform more robust across datasets since the relevant in-
formation from neighborhoods is easier to explain. On the
other hand, in Table 5, Search Keywords and Clickthrough
again demonstrate the effectiveness as additive evidence to
the baseline model. Still, Search Keyword is more effective
than Clickthrough, delivering significantly higher gain over
the baseline (0.0269 vs 0.0036 in MAP gain). In addition,
adding up all information (wAMAN+SchKW+CT) still gets
the best result.

7.3 When The Models Perform Well
The analysis of results above supports the idea that rich

user information is effective in solving the OCCF problem.
We want to further investigate in what scenarios the rich
user information is most effective. As the results show, MF-
based models are not as good as UCF-based models in this
case, therefore we put our focus on the UCF-based models.
The typical transactional user-items matrix in e-commerce is
extremely sparse. There are 1.3 million users and 17 thou-
sand unique items, but only 1.8 million items purchased.
The histogram in Figure 1 shows the statistics in the training
dataset: it is highly skewed, with 49.3% of people only buy-
ing one item in 7 weeks. It is known that the performance
of the Neighbor-based CF drops drastically when there is no
neighborhood supports on the items. In that scenario, the
content similarity between the item and the user search pro-
file might promote the ranking score from 0 to a reasonable
level.

To test this hypothesis, we stratify the users in the test
set into three sub-groups according to the scores which the
UCF model outputs. These scores indicate the support from
neighbors. We observe that the range of that score is from
0 to 1, and we group them into [0, 0.3), [0.3, 0.5) and [0.5,
1] empirically, representing low, middle and high supports.

low middle high
0

0.02

0.04

0.06

0.08

0.1

0.12
M

A
P

UCF
UCF+SchKW
UCFWighCT+SchKW+CT

Figure 2: MAP in different UCF groups

Then, we re-run two well-performing models: UCF+SchKW
and UCFWithCT+SchKw+CT, as well as the UCF model.
Figure 2 summarizes the experimental results. We can see
clearly in Figure 2 that while the two additive models gain
over UCF in both groups of middle and high neighbor sup-
port. They gain significantly in the group with low neighbor
support. This result indicates the complementary nature of
the neighbor-based CF model and the information in Search
Keywords and Clickthroughs. As an extreme case, if the
score from UCF model is 0, other sources of information of
the user-item association would help overcoming the prob-
lem.

7.4 How Much Information is Needed
If the rich user information is effective, an interesting ques-

tion is how much user information is needed? This question
is difficult to answer if all kinds of user information are in-
volved. So we control all other variables, and only select
the Search Keywords, which is an important type of user in-
formation, to access how the performance changes with the
amount of user information varies. In this experiment, we
divide the users to different groups according to the number
of Search Keywords they have in the training set. A step of
50 keywords is used, which results in 30 user groups. And
we use the UCF+SchKW to compute the average MAP of
each group. Results are plotted in Figure 3. This experi-
ment shows very interesting results: the model performs well
on people who have small amount of Search Keywords, and
performance drops in the groups of people who have rela-
tively more Search history; and interestingly, performance
grows again in the groups who have a lot of search history.
The last groups of people represent the frequent buyers; they
tend to buy similar things repeatedly so that the accumu-
lated Search history would help in recommending items to
them.

7.5 Time Effects of the Search History
Research work in [12] shows the importance of time dy-

namics in Collaborative Filtering. The above results show

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

Number of Keywords

M
AP

Figure 3: Number of Keywords VS Performance

Table 7: UCF+SchKW model on 4 Periods
7 weeks 4 weeks 2 weeks 1 week

MAP 0.0782 0.0788 0.0795 0.0798
MPR% 21.8 21.5 21.0 21.2

the importance of the search keywords in overcoming the
limitation of the User-based CF. We further want to know
the time effects on the search keyword information. We
select search keywords from 4 periods of time (7 weeks, 4
weeks, 2 weeks and one week), and randomly select 2000
users who have at least one search keyword in his search his-
tory. Table 7 shows the performance on the UCR+SchKW
model. Interestingly, long search history doesn’t produce
better results. This result suggests that we can only keep
the most recent search logs of the users and can still obtain
reasonable performance in recommending items to users.

8. CONCLUSIONS AND FUTUREWORKS
In this paper we propose two major strategies of incor-

porating rich user information to improve the OCCF per-
formance: one is treating the information as independent
evidence and combining the scores from all sources of user
information to produce the final recommendation. The other
is to tightly include the rich user information into the mod-
els. After careful analysis of the results, we have found the
following conclusions: (1) Rich user information, such as
Search Keywords and Clickthrough data, is very effective to
overcome the sparsity in One-Class Collaborative Filtering.
(2) Rich user information helps the most when the neighbor-
based methods have very low support from its neighbors.
(3) The short term search query history tends to perform as
well as, if not better than, the long term history; so we can
leverage users’ recent search query history to make recom-
mendations.

In the future, we plan to investigate more sophisticated
probabilistic models for unifying all available resources. Ad-
ditional user information is shown to be effective, and more
sophisticated models have the potential to further improve
the recommendation performance. We are also interested
in designing efficient and scalable algorithms for combining

rich user information, since modern large-scale information
systems desire scalable recommender solutions.

9. ACKNOWLEDGMENTS
This paper is based upon work supported in part by the

National Science Foundation under grant CNS-0834709. We
also thank Huizhong Duan from the University of Illinois
at Urbana-Champaign and Maks Ovsjanikov from Stanford
University for their help in the data analysis and discussion.

10. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[2] E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 19–26, New York, NY, USA, 2006. ACM Press.

[3] M. Balabanov́ıc and Y. Shoham. Fab: Content-based,
collaborative recommendation. Communications of the
ACM, 40(3):66–72, 1997.

[4] W. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang, and
E. Y. Chang. Collaborative filtering for orkut
communities: discovery of user latent behavior. In
WWW ’09: Proceeding of the 18th International
World Wide Web Conference, pages 681–690. ACM,
2009.

[5] Y. Chen and J. F. Canny. Probabilistic clustering of
an item. U.S. Patent Application 12/694,885, filed:
Jan, 2010.

[6] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov,
D. Netes, and M. Sartin. Combining content-based
and collaborative filters in an online newspaper. In
Proceedings of ACM SIGIR Workshop on
Recommender Systems, August 1999.

[7] K. R. Gabriel and S. Zamir. Lower rank
approximation of matrices by least squares with any
choice of weights. Technometrics, 21(4):489–498, 1979.

[8] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70,
1992.

[9] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining (ICDM
2008), pages 263–272, 2008.

[10] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142,
New York, NY, USA, 2002. ACM Press.

[11] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434, New York, NY, USA, 2008. ACM.

[12] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge
discovery and data mining, New York, NY, USA,
2009. ACM.

[13] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[14] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, Jan/Feb 2003.

[15] R. Pan and M. Scholz. Mind the gaps: weighting the
unknown in large-scale one-class collaborative filtering.
In KDD ’09: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 667–676. ACM, 2009.

[16] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In IEEE International Conference on Data
Mining (ICDM 2008), pages 502–511, 2008.

[17] A. Popescul, L. Ungar, D. Pennock, and S. Lawrence.
Probabilistic models for unified collaborative and
content-based recommendation in sparse-data
environments. In Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence,
pages 437–444, 2001.

[18] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 253–260,
New York, NY, USA, 2002. ACM Press.

[19] X. Shen, B. Tan, and C. Zhai. Implicit user modeling
for personalized search. In CIKM ’05: Proceedings of
the 14th ACM international conference on
Information and knowledge management, pages
824–831, New York, NY, USA, 2005. ACM.

[20] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic.
A family of non-negative matrix factorizations for
one-class collaborative filtering. In ACM RecSys 2009,
2009.

[21] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In ICML ’03: Proceedings of the 20th
International Conference on Machine Learning, pages
720–727. AAAI Press, 2003.

[22] B. Tan, X. Shen, and C. Zhai. Mining long-term search
history to improve search accuracy. In KDD ’06:
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 718–723, New York, NY, USA, 2006. ACM.

[23] A. N. Tikhonov and V. Y. Arsenin. Solution of
Ill-posed Problems. John Wiley & Sons, 1977.

