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ABSTRACT 
 
In this paper, we describe a new model for collaborative filtering. 
The motivation of this work comes from the fact that two users 
with very similar preferences on items may have very different 
rating schemes. For example, one user may tend to assign a higher 
rating to all items than another user.  Unlike previous models of 
collaborative filtering, which determine the similarity between 
two users only based on their rating performance, our model treats 
the user’s preferences on items separately from the user’s rating 
scheme. More specifically, for each user, we build two separate 
models: a preference model capturing which items are favored by 
the user and a rating model capturing how the user would rate an 
item given the preference information. The similarity of two users 
is computed based on the underlying preference model, instead of 
the surface ratings. We compare the new model with several 
representative previous approaches on two data sets. Experiment 
results show that the new model outperforms all the previous 
approaches that are tested consistently on both data sets. 

 
Categories & Subject Descriptors:  
H.3.3  [Information Search and Retrieval]:  Information Search 
and retrieval—Information Filtering 
 
General Terms 
Application, Algorithms. 

Keywords 
Collaborative filtering, probabilistic model, preference model, 
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1. INTRODUCTION 
 

With the rapid growth of digital data repositories and the 
overwhelming supply of on-line information on the Internet, it 
becomes more and more important to separate important 
information from those nuisance data. Information filtering refers 

to the task where useful information is separated from the 
irrelevant information. In this paper, we focus on the task of 
collaborative filtering, which is to predict the utility of items for a 
particular user based on the ratings of information items given by 
many other users. The fact that collaborative filtering does not 
rely on any content information about the items or descriptions of 
users, but only depends on the preference patterns of users makes 
it more general than other tasks such as ad hoc information 
retrieval and content-based filtering [6,7]. In many cases, 
collaborative filtering reflects a more realistic setup, particularly 
in the web environment, where descriptions of items and users are 
not available due to the privacy issue. 

Many algorithms have been proposed to deal with the 
collaborative filtering problem [1, 2, 3, 4, 5, 8, 12]. According to 
[1], most collaborative filtering algorithms can be categorized into 
two classes: Memory-based algorithms and model-based 
algorithms. The memory-based algorithms first find the users from 
the training database that are most similar to the current test user 
in terms of the rating pattern, and then combine the ratings given 
by those similar users to obtain the prediction for the test user. 
The major approaches within this category are the Pearson-
correlation based approach [4], the vector similarity based 
approach [1], and the extended generalized vector space model 
[3]. Model-based approaches group together different users in the 
training database into a small number of classes based on their 
rating patterns. In order to predict the rating of a test user on a 
particular item, we can simply categorize the test user into one of 
the predefined user classes and use the predicted class as the 
prediction for the test user. Proposed algorithms within this 
category include a Bayesian network approach [1], and the aspect 
model [5]. Compared with the memory-based approaches, the 
model-based approaches only have to store the profiles of models 
and therefore are much more efficient than storing the whole user 
database. On the other hand, the offline computation of memory-
based approaches can be much cheaper than the model-based 
approaches, which often require the use of the Expectation-
Maximization (EM) [11] algorithm, variation method and other 
sophisticated methods to combat the complexity of computation. 
Furthermore, model-based approaches tend to assume that a small 
number of user classes is sufficient for modeling the rating 
patterns of users, thus imply a loss of diversity among users, 
which may be very important in helping predict the ratings of a 
test user. Indeed, according to the previous studies on the 
comparison of memory-based approaches and model-based 
approaches, memory-based approaches such as the correlation 
method performs very close to those complicated model-based 
methods such as a Bayesian network approach and an aspect 
model [1]. Because both memory-based and model-based models 
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have their own advantages and disadvantages, there are hybrid 
approaches that try to unify these two types of approaches into a 
single model. The approach ‘Personal Diagnosis’ [12] belongs to 
this category, which appears to outperform previous model-based 
and memory-based approaches. 

There are two major issues involved in the collaborative filtering 
task. The first one is the missing data issue. Usually most users 
would rate only a small number of items within the whole item 
set. Therefore the votes in the intersection of items rated by both 
users will be small, which may lead to a poor estimate of the 
similarities between users. Special treatments are needed to deal 
with the missing ratings. For example, in the correlation approach, 
default ratings are introduced for those unrated items [1]. For 
some probabilistic models, an extra rating category named ‘no-
rating’ is introduced in the case when ratings are missing [1]. The 
second issue arose out of the observation that users with similar 
preferences on items may still rate items differently. Indeed, in the 
previous study, the correlation approach usually outperforms the 
vector similarity approach significantly [1]. One major difference 
between these two approaches is that, for the correlation 
approach, the similarity (i.e. the Pearson Correlation Coefficients) 
between two users are measured based on the relative ratings, 
namely the original ratings subtracted by the average rating of 
each user, while for vector similarity approach, the original 
ratings are used for measuring the user similarity. In the 
comparison of these two approaches in [1], the correlation method 
outperforms the vector similarity method significantly, 
particularly in terms of the MSE metric. This fact indicates that, 
due to the variance in the rating behavior of different users, the 
rating information may not be able to indicate the preference 
information directly. Therefore, an extra transformation is needed 
to convert the rating information into preference information. In 
the correlation method, the transformation is accomplished by 
subtracting the original ratings from the averaged ratings of each 
user. However, this simple transformation does not take into 
account the whole rating distribution.  

In this paper, we propose a new probabilistic model that directly 
addresses the issue that users with similar preference pattern(s) 
may adopt different rating patterns. We exploit model smoothing 
to deal with the problem of sparse data and missing values. 
Although some previous probabilistic models (e.g., the two-side 
clustering approach [5]) have indirectly captured the difference 
between user ratings and user preferences, our approach is more 
direct –we explicitly convert ratings into preferences. 

The core part of our algorithm is a probabilistic mechanism that is 
able to transform the rating information of items into the 
likelihood for items to be preferred by a user. With this 
mechanism, instead of computing the similarity between users 
based on the observed ratings, we can compare users based on 
their underlying preference patterns on the items. Furthermore, 
with the same conversion mechanism, we can also predict the 
rating for a new user on an item by first computing the underlying 
preference of the user on the item and then computing the most 
likely rating category for that item. This new framework is similar 
to the model-based approaches in that global models will be 
computed and computation is efficient. 

The rest of this paper is arranged as follows: Section 2 discusses 
the details of this new framework for collaborative filtering. The 

empirical study is presented in Section 3. Section 4 concludes this 
work and discusses the potential future work. 

2. A New Framework for Collaborative 
Filtering 
 

A major problem with the traditional memory-based approach is 
that, a user’s rating behavior and preference behavior are tangled 
with each other. As a result, the user similarity is often computed 
based on the surface rating patterns, and a direct combination of 
other users’ surface ratings is used to predict the rating for a new 
user. Since users may have different rating tendencies and two 
users with different preferences may accidentally have similar 
surface rating patterns, it is desirable to separate the preference 
information from the rating information, so that we can explicitly 
find similar users in terms of either their preference patterns or the 
rating patterns. In this paper, we propose a memory-based 
probabilistic model, which decouples the rating pattern and the 
preference pattern of a user. We treat each user within the training 
database as a separate model (or expert), and a database of users 
serve as an ensemble of models. A Bayesian approach can then be 
used to predict the rating for a new user by combining the 
predictions given by all the expert models.  

In this model, in order to predict the ratings for test users, four 
steps are required: 

1) First, a “conversion model” is computed for all users, 
including both the training and test users. Such a conversion 
model makes it possible to estimate the likelihood of user 
preferring an object based on the observed rating pattern of 
the user. This is a crucial step in this new model, because, 
with this conversion, we can explicitly estimate the 
preference similarity of users without worrying about the 
variation of the rating behavior among different users. 

2) Second, the preference similarities between the test user and 
the training users are computed using the estimated 
preference information. As in the work by Pennock et al. 
[12], the similarity between two users is computed based on 
the likelihood of mistaking one user as the other. 

3) Third, the preference patterns on the un-rated objects for the 
test user are computed as the combination of preference 
patterns of training users weighted by their preference 
similarities. This is essentially Bayesian model averaging. 

4) Finally, the preference patterns predicted for the test user are 
converted back to the rating patterns by reversing the 
conversion model already computed in step 1. 

Unlike most other memory-based approaches, where all inferences 
are based on the surface rating patterns, our new model is able to 
convert the observed rating patterns into the underlying 
preference patterns, which, presumably, are more comparable 
between different users. The final predicted ratings are obtained 
by converting the estimated preference patterns back to ratings 
according to the test user’s rating patterns. 

2.1 Decoupled modeling of preferences         
and ratings 
To illustrate how we can decouple the preference and rating 
models, we first use a simple example to explain how to convert 



ratings into preference likelihoods, and then give a formal 
description. 

2.1.1 Intuition 
Consider an example of two users (‘A’ and ‘B’) who have similar 
“taste” of preferences for 10 items. Suppose user ‘A’ tends to give 
all items a higher rating than user ‘B’, as shown in Table 1, where 
the items are numbered in the ascending order of preferences.  
 
If we rely on the surface rating patters to compute the similarity of 
these two users, we may find that they are not very similar, even if 
we normalize each user’s ratings by the user’s average rating  

 
value as done typically in a traditional memory-based approach. 
How can we map these surface ratings to somehow more 
comparable underlying preference likelihood? We note that, user 
‘A’ appear to be more “generous” in assigning ratings, as the 
average rating of all the 10 times is higher for ‘A’ than for ‘B’.  , 
In particular, ‘A’ has given four items of a rating of ‘4’, while ‘B’ 
has given only two.  Intuitively, a rating of ‘4’ should mean 
stronger preference for user ‘B’ than for user ‘A’, since the former 
has assigned ‘4’ to fewer items. Based on this simple analysis, we 
can see that the distribution of ratings does tell us some 
information about the true underlying preferences that the user has 
on the objects. More specifically, two aspects of the rating 
distribution may influence the likelihood of preference: 
1) For a particular rating ‘R’, if there are a large percentage of 

objects that are rated less or equal to rating ‘R’, this rating 
category has a high chance to be preferred by the user. 
Rating category ‘5’ is such an example. 

2) For a particular rating ‘R’, if there are a large percentage of 
objects that are rated exactly in this category, this rating 
category will have less chance to be preferred by the user. 
Rating category ‘4’ for user ‘A’ is such an example. 

 
Table 2: The rating distribution for user ‘A’ and ‘B’ 

Rating(R) 1 2 3 4 5 
Pr(Rating=R) 0.1 0.1 0.3 0.4 0.1 
Pr(Rating≤R) 0.1 0.2 0.5 0.9 1 User A 

Pr(Rating≤R)−P
r(Rating=R)/2 

0.05 0.15 0.35 0.7 0.95 

Rating(R) 1 2 3 4 5 
Pr(Rating=R) 0.2 0.3 0.2 0.2 0.1 
Pr(Rating≤R) 0.2 0.5 0.7 0.9 1 User B 

Pr(Rating≤R)−P
r(Rating=R)/2 

0.1 0.35 0.6 0.8 0.95 

 
To combine these two criterions together, we can use the 
following ‘halfway accumulative distribution’ to approximate the 
likelihood of preference: 

Pr(R is preferred) = Pr(Rating≤R)−Pr(Rating=R)/2 (1) 

where R is a rating category. The first term on the right hand side 
Pr(Rating≤R) implements the idea that a user tends to like items 
with rating category ‘R’ if many items are rated under that 
category. By subtracting the second term Pr(Rating=R)/2 from the 

first term Pr(Rating≤R), we are able to discount the preference of 
a rating category if many objects are rated as that category.  
 
Table 2 lists the results for Pr(Rating=R), Pr(Rating≤R) and 
Pr(Rating≤R)−Pr(Rating=R)/2 for both users. We see that the fact 
that user ‘A’ is more “generous” than ‘B’ is now well captured by 
the different preference mappings. In particular, a rating of ‘4’ 
means slightly stronger preference if given by ‘B’ than if given by 
‘A’. Table 3 shows the estimated preference likelihoods of all the 
10 items for both users. Clearly, the two users now look much 
more similar than in Table 1.  
 

Table 3: Estimated preferences for user ‘A’ and ‘B’ 
Item 1 2 3 4 5 6 7 8 9 10 
Pref(A) 0.05 0.15 0.35 0.35 0.35 0.7 0.7 0.7 0.7 0.95 

Pref(B) 0.1 0.1 0.35 0.35 0.35 0.6 0.6 0.8 0.8 0.95 

 
The ‘halfway accumulative distribution’ shown in Equation (1) 
thus allows us to convert ratings into the likelihood of preference. 
For “reverse engineering”, i.e., finding the most likely rating 
category given a computed likelihood of preference, we can 
simply find the category that is most likely to generate the 
likelihood of preference. Interestingly, the ‘halfway accumulative 
distribution’ in Equation (1) can also be proved by the maximum 
likelihood estimation. The details of the proof are shown in the 
Appendix. Furthermore, it is not difficult to show that the 
averaged preference likelihood of any user over all the rated 
items, as computed in Equation (1), is exactly 0.5. Therefore, by 
using the conversion formula in Equation (1), we are able to 
achieve the similar effect as the Pearson Correlation method, 
namely adjusting every user to have the same mean in their 
preference patterns.   

2.1.2 Formal Description 
Let x and y be an item and a user, respectively. Let Ry(x) stand for 
the rating that user y gives to item x and Py(x) stand for the 
likelihood that user y prefers item x. Then, our task is to find out 
the distribution of likelihood of preference Py(x) given the rating 
category Ry(x). For the sake of simplicity, we can assume that the 
distribution of likelihood of preference Py(x) given the rating 
information Ry(x) is a Gaussian distribution N(µ(Ry(x),y), 
σ(Ry(x),y)), which centers at µ(Ry(x),y) with width of σ(Ry(x),y). 
Notice that both the mean and width of the distribution depend on 
not only the rating Ry(x) but also the user y, which indicates that 
even two different users may give an object the same rating, the 
distribution of the likelihood of preference on that object can still 
be different. According to the discussion in the previous 
subsection, we can use the ‘halfway accumulative distribution’ of 
a rating category as the averaged likelihood of preference for that 
category. Therefore, the mean of the Gaussian µ(Ry(x),y) can be 
written as: 

2/)|)(Pr()|)(Pr()),(( yxRRyxRRyxR yyy =−≤=µ  (2) 

where Pr(R≤Ry(x)|y) is the likelihood for user y to rate any item no 
higher than the rating category Ry(x), and Pr(R=Ry(x)|y) is  the 
likelihood for user y to rate any item as category Ry(x). For the 
width of the Gaussian distribution σ(Ry(x),y), we can simply set it 
as )|)(Pr( yxRR y= , i.e. 

)|)(Pr()),(( yxRRyxR yy ==σ  (3) 

Table 1: Rating information for user ‘A’ and ‘B’ 
Item 1 2 3 4 5 6 7 8 9 10 

Rating(A) 1 2 3 3 3 4 4 4 4 5 
Rating(B) 1 1 2 2 2 3 3 4 4 5 



This is reasonable, because, intuitively, the more objects a user 
give category ‘R’ to, the higher the variance in the likelihood of 
being preferred by that user within that rating category ‘R’ will 
be. Therefore, for a particular rating category ‘R’, the variance of 
preference likelihood should be proportional to the percentage of 
objects rated within that category, i.e. Pr(R=Ry(x)|y). With the 
defined Gaussian distribution N(µ(Ry(x),y),σ(Ry(x),y)) , we can do 
two things: 

1) Find out the averaged likelihood of being preferred given the 
rating category Ry(x). Since we use Gaussian distribution for 
describing the distribution of likelihood of being preferred, 
the averaged preference likelihood given a rating category of 
a user is simply the mean of the Gaussian distribution 
µ(Ry(x),y). To simplify the computation, in the later 
discussion, we will use the averaged preference likelihood 
given a rating category to replace the Gaussian distribution.  

2) Compute the most likely rating category given a computed 
likelihood of being preferred. To do this, we can simply 
search for the Gaussian distribution of a rating category that 
has the highest probability of generating the computed 
preference likelihood, i.e. 
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2.2 Computing user similarity  
As already pointed out before, there are two different notions of 
similarity between users: similarity in the preference pattern and 

similarity in the rating pattern. Let ', yy
Pw  stand for the 

preference similarity between user y and user y’, and ', yy
Rw  for 

the rating. We now discuss how to compute them.  

2.2.1 Computing rating similarity 
We define the similarity of user y and y’ in rating patterns as the 
likelihood of mistaking user y as user y’ given the rating pattern of 
y. In order to define it rigorously, we first introduce some 
definitions. 

Let {1, 2, …, Rmax} be the set of rating categories. A rating 
category i is preferred to category j if and only if number i is 

larger than number j. Let )(
~

yR  be user y’s rating pattern, which 

is defined as the set of counts of objects rated as different rating 
categories, or 

}1),,({)(
~

maxRRyRCyR ≤≤=  (5) 

where C(R, y) is the count of objects rated as category R by user y.  

With the above definitions, ', yy
Rw , the rating similarity of user y 

and user y’, can be defined as: 
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The last step is realized by assuming that every user has the same 
prior p(y). By assuming every rating is generated independently of 

others, we further express )'|)(
~

( yyRp  as: 
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Where Pr(R|y) stands for the likelihood for user y to come up with 
rating R for an arbitrary object. By plugging Equation (7) into 

Equation (6), we are able to compute ', yy
Rw , which is useful for 

smoothing user patterns. 

2.2.2 Compute preference similarity 
To compute preference similarity of two users, we first derive the 
preference pattern of each user using the method described in 
section 2.1, and then compare the derived preference patterns. 
According to section 2.1, the likelihood for object x to be 
preferred by user y, Py(x), can be approximated as µ(Ry(x),y) 
where Ry(x) is the rating of object x by user y. Thus, similar to the 
computation of the rating similarity, the preference similarity of 

user y and user y’, ', yy
Pw , can also be computed as the likelihood 

of mistaking user y’ as user y given the preference pattern of y.  

Let )(
~

yX  be the set of objects that are rated by user y. The 

preference pattern of user y, )(
~

yP , is defined as 
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The preference similarity of user y and user y’, ', yy
Pw , can be 

written as: 
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Similarly, we assume that each item is generated independently of 

others, and express )'|)(
~

( yyPp  as: 
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There is, however, a flaw in the above expression, i.e. there are 
items that are rated by user y but not rated by user y’. In that case, 
we will not have rating information Ry’(x) for user y’ on object x, 
which is required in Equation (10). This corresponds to the 
missing data issue that has been discussed in the introduction 
section. There are two heuristic solutions: 
1) Item default preference. Set Py’(x) to the averaged preference 

likelihood of item x over all the users that have rated object 
x. 

2) User default preference. Set Py’(x) to the averaged likelihood 
of all objects rated by user y’. This is equivalent to setting 
Py’(x) to 0.5 uniformly.  

3) We will compare the effectiveness of these two methods 
later. 



2.3 Rating Prediction 
Ultimately, our goal is to predict the rating for a test user. Let Y be 
the training user database. For each training user y ∈ Y, the 

preference pattern is }1|)|{Pr()(
~

maxRRyRyRp ≤≤= , and 

the rating pattern is 

)}(
~

|)),(({)}(
~

|)({)(
~

yXxyxRyXxxPyP yy ∈∀=∈∀= µ  

A test user y0 often has only a small number of items rated. Let 

)(
~

0yX  stand for the set of items that are rated by user y0. In 

order to obtain the rating pattern of the test user y0, we have two 
choices: 

1) Simple counting. Compute Pr(R| y0) by directly counting the 
percentage of items rated as category R by user y. However, 
since there are only a small number of objects rated by user 
y0, the number of objects may not be large enough to support 
a reliable estimate of Pr(R| y0).  

2) Smoothing with rating patterns of other users. A better 
solution to alleviate this sparse data problem is to find out 
which training users are similar to test user y0 in rating, and 
smooth the rating pattern of the test user y0 with the rating 

patterns of those similar users. Let )(
~

0yRp  be the rating 

pattern obtained by the simple counting method and 

)('
~

0yRp  the smoothed rating pattern using users of similar 

rating patterns. Then, )('
~

0yRp  can be expressed as: 

�

�

∈

∈

+

+
=

≤≤=

Yy
yy

R
yy

R
Yy

yy
R

yy
R

p

ww

yRwyRw

yR

RRyRyR

,,

,0,

max0

000

000 )|Pr()|Pr(

)|(Pr'

}1|)|({Pr')('
~

 (11) 

Note that 0,yy
Rw is used here. With )(

~
yRp  computed for the test 

user y0, we can easily compute the preference pattern for user y0 
using Equation (2) and (3). Then, according to section 2.2.2, we 
can compute the preference similarities of the test user y0 and any 

other user, 0, yy
Pw . The expected likelihood for user y0 to prefer 

an un-rated item x is then computed as: 
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Finally, we predict the rating of an un-rated item x for the user y0 

by converting the expected likelihood of being preferred )(ˆ
0

xPy  

to the most likely rank )(ˆ
0

xRy  using the method described in 

section 2.1.2. 

In summary, there are four steps involved in the prediction of 
rating for a test user: 

1) Compute the rating pattern of the test user by either the simple 
counting method or smoothing with rating patterns of similar 

training users. The rate similarity can be computed using the 
method described in section 2.2.1. 

2) Compute the preference pattern of the test user on the rated 
objects using the method presented in Section 2.1.2. 

3) Compute the expected preference likelihood an un-rated item x 
using Equation (12) with the preference similarity computed using 
the method described in Section 2.2.2. 

4) Predict the rating category for item x by converting the 
expected preference likelihood to the most likely rating category. 

One advantage of this model, compared with the previous 
approaches to collaborative filtering is the explicit conversion of 
the rating pattern into the underlying preference pattern for all 
users. Moreover, both user comparisons and prediction 
combinations are operated at the level of the preference patterns, 
instead of the rating patterns.  

3. Experiments 
 

We need to answer three questions about this new model for 
collaborative filtering: 

1) Is the new model for collaborative filtering effective? To 
answer this question, we will compare our model with 
several representative existing approaches. Furthermore, we 
will vary the size of user database and the number of items 
that are rated by the test user to see the effectiveness of our 
model in different situations. 

2) How does the default preference likelihood influence the 
performance? In section 2.2.2, in order to compute the 
preference similarity between users, we have to specify the 
default preference likelihood of a user for an item that is not 
rated by that user. We will examine the effectiveness of the 
three methods proposed in Section 2.2.2.  

3) How does smoothing of rating patterns influence the 
performance of our model? In Section 2.3, in order to handle 
the sparse data problem in computing the rating pattern for a 
test user, we suggest smoothing the rating pattern of the 
testing user with the rating patterns of similar users. We 
would like to examine the effectiveness of this smoothing 
method. 

3.1 Baseline methods 
Following [1,2,12], we compare our method to several existing 
methods, including the Pearson Correlation Coefficient method, 
the vector similarity method and the Personality diagnosis 
method. These methods are described below.  

• Pearson Correlation Coefficient (PCC) 

According to [1], Pearson Correlation Coefficient method predicts 
the rating of a test user y0 on item x as: 
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where the coefficient 
0, yyw is computed as 
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• Vector Similarity (VS) 

This method is very similar to the previous method except that the 
correlation coefficient 

0, yyw is computed as: 
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• Personality Diagnosis (PD) 

This is a method introduced by Pennock et al. in [4]. It treats each 
user in the training pool as an individual model. In order to 
compute the ratings for active (test) users, it first computes the 
likelihood of generating the observed ratings of the active user for 
each model (e.g. user) within the training pool, i.e. 
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Then, the likelihood for the test user to rate an unrated item x as v 
is computed as: 
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In our experiments, the standard deviation σ is set to 1 

(17) 

3.2 Description of Datasets 
We experimented with two commonly used data sets of movie 
ratings. The first is named ‘MovieRating’, which can be obtained 
from the web site [9], and the second one is a subset of the 
standard EachMovie dataset obtained from the web site of 
Compaq research [10]. For the EachMovie dataset, 2000 users 
were randomly selected from those who have rated more than 40 
movies. We did not use all the available user data because we 
want to test our algorithms in a more challenging and realistic 
scenario when the system has not yet acquired a large user base. 
In general, we should expect an algorithm to perform better with 
more user data. The basic properties of these two datasets are 
listed in Table 3. 
 

Table 3: Description of experimental datasets 

 MovieRating EachMovie 

Number of Ratings 5 6 

Number of Users 500 2000 

Number of Items 1000 1648 

Average number of 
rated items 

87.73 129.62 

 

To compare the methods in full spectrum, we vary both the 
number of users in the training database and the number of 
observed items that are rated by the test user, as what have been 
done in [1, 8, 12]. For the smaller database ‘MovieRating’, we 

allow the number of users in the training database to be 100 and 
200, and the number of exposed items rated by the test users to be 
5, 10 and 20. For the larger database ‘EachMovie’, we choose the 
size of training database to be 200 and 400, and the number of 
exposed items that are rated by the test users to be 5, 10 and 20. In 
all cases, the rest of the users are used for testing. The reason for 
choosing a relatively larger number of users in the training 
database for the ‘EachMovie’ database is because the 
‘EachMovie’ database contains considerably larger number of 
users and movies than the ‘MovieRating’ database.  

3.3 Evaluation Measure 
For evaluation, we look at the mean absolute deviation of the 
predicted ratings from the actual ratings on items that users in the 
test set have actually rated, i.e. 
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where )(ˆ
0

xRy  is the predicted rating on item x by user y0, )(
0

xRy  

is the actual rating on item x by user y0 and my0 is the number of 
test items that have been rated by the test user y0. We refer to this 
measure as the mean absolute error (MAE) in the rest of this 
paper.  There are some other measures like the Receiver Operating 
Characteristic (ROC) as a decision-surrport accuracy measure [7] 
and the normalized MAE.  But since MAE is the most commonly 
used metric and has been reported in most previous research [1, 2, 
7, 8, 12], we chose it as the evaluation measure in our 
experiments to make our results more comparable. 

3.4 Experiment Results 
In order to answer the three questions raised at the beginning of 
this section, we design three corresponding groups of 
experiments. The results of these three experiments are discussed 
in the following three subsections. 

3.4.1 Effectiveness of the New Mode 
We compare the new model with the three baseline methods over 
the two datasets using the MAE as the evaluation metric. The 
results are shown in Table 4 and 5, respectively. 

From Table 4 and 5, we see that the new model outperforms all 
the four baseline methods substantially and consistently over both 
the ‘MovieRating’ and ‘EachMovie’ databases and for all the 
settings. The improvement is substantial because, over both the 
‘MovieRating’ and ‘EachMovie’ databases, the new model with 
the least information (i.e. the smallest number of rated items and 
smallest number of users in the training set) performs even better 
than all the baseline methods with the most information. 
Therefore, we can conclude that the new model is more effective 
in predicting the ratings for the test users than the existing 
methods we tested. 

3.4.2 Effectiveness of Smoothing in Computing the 
Rating Pattern 
In Section 2.3, we present two different ways to compute the 
rating pattern for the test user, either based on the unsmoothed 
percentage of each rating category or through smoothing the 
rating pattern of the test user with other similar users in the 
training database. In Table 6 and 7, we show the performance of  



Table 4: MAE results for four baseline methods and the new 
model on the ‘MovieRating’ database. A smaller number indicates 
a better performance. 

  5 Items 
rated 

10 Items 
rated 

20 Items 
rated 

PCC 0.881 0.832 0.809 

VS 0.859 0.834 0.823 

PD 0.839 0.826 0.818 

100 Training 

 Users 

New Model 0.788 0.776 0.763 

PCC 0.878 0.828 0.801 

VS 0.862 0.950 0.854 

PD 0.835 0.816 0.806 

200 Training 

Users 

New Model 0.768 0.760 0.743 

Table 5: MAE results for four baseline methods and the new 
model on the ‘EachMovie’ database. A smaller number indicates a 
better performance. 

  5 Items 
rated 

10 Items 
rated 

20 Items 
rated 

PCC 1.22 1.16 1.13 

VS 1.25 1.24 1.26 

PD 1.19 1.16 1.15 

200 Training 

 Users 

New Model 1.04 1.01 0.98 

PCC 1.22 1.16 1.13 

VS 1.32 1.33 1.37 

PD 1.18 1.16 1.15 

400 Training 

Users 

New Model 1.03 1.00 0.97 
 

Table 6: MAE results for the new model on the ‘MovieRating’ 
database with and without smoothing in computing the rating 
pattern for test users. A smaller number indicates a better 
performance.  

  5 Items 10 Items 20 Items 

w.o. smoothing 0.814 0.788 0.771 100 Training 

Users w.i. smoothing 0.788 0.776 0.763 

w.o. smoothing 0.789 0.766 0.747 200 Training 

Users w.i. smoothing 0.768 0.760 0.743 

Table 7: MAE results for the new model on the ‘EachMovie’ 
database with and without smoothing in computing rating pattern 
for testing users. A smaller number indicates a better performance. 

  5 Items 10 Items 20 Items 

w.o. smoothing 1.06 1.01 0.98 200 Training 

Users w.i. smoothing 1.04 1.01 0.98 

w.o. smoothing 1.05 1.01 0.98 400 Training 

Users w.i. smoothing 1.03 1.00 0.97 

 

the new model with and without the smoothing procedure in 
computing the rating pattern for the test user. 

In general, smoothing of the rating pattern outperforms the 
unsmoothed simple percentage. Particularly, when the number of 
exposed items rated by the test user is small, the smoothing 
technique appears to help even more in the performance. Take the 
‘MovieRating’ database with 100 training users as an example. 
When there are only 5 rated items exposed to the system, with the 
smoothing technique, the MAE is improved by 0.026. When the 
number of exposed items rated by the test user grows to 10 and 
20, the improvement in MAE decreases to 0.012 and 0.008. This 
is expected, since when the number of rated items of test users is 
smaller, the sparse data issue is more severe in estimating the 
rating pattern. Therefore, the smoothing technique is more helpful 
when there are only a small number of rated items available. 

3.4.3 Effectiveness of Different Default Preferences 
In section 2.2.2, we discussed the issue of missing data, namely 
the items that are rated by the test user but not by the training 
users. We proposed two different strategies for filling out the 
missing preferences for these items, i.e., item default preference 
and user default preference. 
 

Table 8: MAE results for the new model on the ‘MovieRating’ 
database using the two default preference-setting methods. A 
smaller number indicates a better performance.  

  5 Items 10 Items 20 Items 

Item default 0.787 0.777 0.765 100 Training 

Users User default 0.787 0.777 0.762 

Item default 0.768 0.762 0.742 200 Training 

Users User default 0.768 0.761 0.742 

Table 9: MAE results for the new model on the ‘EachMovie’ 
database using the two default preference-setting methods. A 
smaller number indicates a better performance. 

  5 Items 10 Items 20 Items 

Item Default 1.04 1.01 0.98 200 Training 

Users User Default 1.04 1.01 0.98 

Item Default 1.03 1.00 0.98 400 Training 

Users User Default 1.03 1.00 0.97 

 

These two methods are compared in Table 8 and Table 9. 
Interestingly, the two strategies have almost identical performance 
in all cases. We suspect that the mean preference likelihood by 
averaging the preference of different users on the same item may 
actually be around 0.5, which is the average preference value of a 
user.  

4. Conclusions and Future Work 
 

In this paper, we propose a new probabilistic framework for 
collaborative filtering. The model effectively addresses a critical 
issue in collaborative filtering, that is, users with similar 
preference patterns can rate objects differently due to the use of 
different rating schemes. Unlike previous work, where user 
similarities are computed directly using the surface rating 
information, our model first converts the surface ratings of objects 
into an underlying preference likelihood, and then computes the 



similarity between users based on the derived preference patterns 
instead of the surface rating patterns. By doing so, we are able to 
explicitly separate the preference information from the rating 
information. More specifically, we have two models for each user. 
One is a preference model, capturing which type of objects a user 
prefers, and the other is a rating model, capturing how a user rates 
objects according to his/her preference. Our experiments on two 
commonly used movie rating data sets show that the proposed 
new model consistently and substantially outperforms four 
representative existing methods. 

As stated in Section 2.2.1, when a rating is converted into the 
likelihood of preference, it should result in a distribution. 
However, for the simplicity of computation, we simply use the 
mean of the distribution to replace the whole distribution. One 
future research direction would be to compute the similarity of 
users directly using the distribution instead of the mean of the 
distribution. Another limitation of this work is that the 
transformation of ratings into the likelihood of preference is 
defined according to a very simple probabilistic model. A better 
solution would be to find out the transformation according to 
more sophisticated optimization criterion, which is another 
interesting direction to further explore. For example, a graphic 
model may be used to find the optimal transformation.  
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6. Appendix 
 

In this appendix, we will derive Eqn. (1) by using Maximum 
Likelihood Estimation (MLE). Let {1, 2, …, Rmax} be the set of 
rating categories, {X1, X2, …, XRmax} be the set of items, each 
being assigned a rating category, and θ={p1, p2, …, pRmax} be the 
set of probabilities for each category to be preferred. Assuming 
that L is a ranking list that is consistent with the rating pattern, 
namely all the items that rated in a high category will be put at the 
beginning of the ranking list. The appropriate preference 
probabilities θ should have a large likelihood to generate such 
consistent ranking list, namely 

)|Pr(maxarg* θθ
θ

L=  (A1) 

The generation probability for the ranking list L Pr(L|θ) can be 
written as the product of likelihood of generating the correct order 
for any two items, i.e. 
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(A2) 

Where, Pr(x>x’) is the probability that item x is preferred to item 
x’. Notice that for two items belonging to the same category, any 
order will be consistent with the rating patterns. Pr(x>x’) can be 
written as expressions of preference probabilities θ, i.e.: 

)1()|'Pr( )'()( xRxR ppxx −=> θ  (A3) 

With expression (A3) and (A2), we have the likelihood Pr(L|θ) as: 
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By maximizing the likelihood Pr(L|θ), we can compute the most 
likely preference probabilities θ, which will directly result in the 
Equation (1). 


