
Collaborative Filtering with Decoupled Models for
Preferences and Ratings

Rong Jin 1 , Luo Si 1 , ChengXiang Zhai 2 and Jamie Callan 1
1 School of Computer Science, Carnegie Mellon University

2 Department of Computer Science, University of Illinois at Urbana-Champaign

ABSTRACT

In this paper, we describe a new model for collaborative filtering.
The motivation of this work comes from the fact that two users
with very similar preferences on items may have very different
rating schemes. For example, one user may tend to assign a higher
rating to all items than another user. Unlike previous models of
collaborative filtering, which determine the similarity between
two users only based on their rating performance, our model treats
the user’s preferences on items separately from the user’s rating
scheme. More specifically, for each user, we build two separate
models: a preference model capturing which items are favored by
the user and a rating model capturing how the user would rate an
item given the preference information. The similarity of two users
is computed based on the underlying preference model, instead of
the surface ratings. We compare the new model with several
representative previous approaches on two data sets. Experiment
results show that the new model outperforms all the previous
approaches that are tested consistently on both data sets.

Categories & Subject Descriptors:
H.3.3 [Information Search and Retrieval]: Information Search
and retrieval—Information Filtering

General Terms
Application, Algorithms.

Keywords
Collaborative filtering, probabilistic model, preference model,
rating model

1. INTRODUCTION

With the rapid growth of digital data repositories and the
overwhelming supply of on-line information on the Internet, it
becomes more and more important to separate important
information from those nuisance data. Information filtering refers

to the task where useful information is separated from the
irrelevant information. In this paper, we focus on the task of
collaborative filtering, which is to predict the utility of items for a
particular user based on the ratings of information items given by
many other users. The fact that collaborative filtering does not
rely on any content information about the items or descriptions of
users, but only depends on the preference patterns of users makes
it more general than other tasks such as ad hoc information
retrieval and content-based filtering [6,7]. In many cases,
collaborative filtering reflects a more realistic setup, particularly
in the web environment, where descriptions of items and users are
not available due to the privacy issue.

Many algorithms have been proposed to deal with the
collaborative filtering problem [1, 2, 3, 4, 5, 8, 12]. According to
[1], most collaborative filtering algorithms can be categorized into
two classes: Memory-based algorithms and model-based
algorithms. The memory-based algorithms first find the users from
the training database that are most similar to the current test user
in terms of the rating pattern, and then combine the ratings given
by those similar users to obtain the prediction for the test user.
The major approaches within this category are the Pearson-
correlation based approach [4], the vector similarity based
approach [1], and the extended generalized vector space model
[3]. Model-based approaches group together different users in the
training database into a small number of classes based on their
rating patterns. In order to predict the rating of a test user on a
particular item, we can simply categorize the test user into one of
the predefined user classes and use the predicted class as the
prediction for the test user. Proposed algorithms within this
category include a Bayesian network approach [1], and the aspect
model [5]. Compared with the memory-based approaches, the
model-based approaches only have to store the profiles of models
and therefore are much more efficient than storing the whole user
database. On the other hand, the offline computation of memory-
based approaches can be much cheaper than the model-based
approaches, which often require the use of the Expectation-
Maximization (EM) [11] algorithm, variation method and other
sophisticated methods to combat the complexity of computation.
Furthermore, model-based approaches tend to assume that a small
number of user classes is sufficient for modeling the rating
patterns of users, thus imply a loss of diversity among users,
which may be very important in helping predict the ratings of a
test user. Indeed, according to the previous studies on the
comparison of memory-based approaches and model-based
approaches, memory-based approaches such as the correlation
method performs very close to those complicated model-based
methods such as a Bayesian network approach and an aspect
model [1]. Because both memory-based and model-based models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM ’03, November 3--8, 2003, New Orleans, Louisiana, USA

Copyright 2003 ACM 1-58113-723-0//03/0011…$5.00.

have their own advantages and disadvantages, there are hybrid
approaches that try to unify these two types of approaches into a
single model. The approach ‘Personal Diagnosis’ [12] belongs to
this category, which appears to outperform previous model-based
and memory-based approaches.

There are two major issues involved in the collaborative filtering
task. The first one is the missing data issue. Usually most users
would rate only a small number of items within the whole item
set. Therefore the votes in the intersection of items rated by both
users will be small, which may lead to a poor estimate of the
similarities between users. Special treatments are needed to deal
with the missing ratings. For example, in the correlation approach,
default ratings are introduced for those unrated items [1]. For
some probabilistic models, an extra rating category named ‘no-
rating’ is introduced in the case when ratings are missing [1]. The
second issue arose out of the observation that users with similar
preferences on items may still rate items differently. Indeed, in the
previous study, the correlation approach usually outperforms the
vector similarity approach significantly [1]. One major difference
between these two approaches is that, for the correlation
approach, the similarity (i.e. the Pearson Correlation Coefficients)
between two users are measured based on the relative ratings,
namely the original ratings subtracted by the average rating of
each user, while for vector similarity approach, the original
ratings are used for measuring the user similarity. In the
comparison of these two approaches in [1], the correlation method
outperforms the vector similarity method significantly,
particularly in terms of the MSE metric. This fact indicates that,
due to the variance in the rating behavior of different users, the
rating information may not be able to indicate the preference
information directly. Therefore, an extra transformation is needed
to convert the rating information into preference information. In
the correlation method, the transformation is accomplished by
subtracting the original ratings from the averaged ratings of each
user. However, this simple transformation does not take into
account the whole rating distribution.

In this paper, we propose a new probabilistic model that directly
addresses the issue that users with similar preference pattern(s)
may adopt different rating patterns. We exploit model smoothing
to deal with the problem of sparse data and missing values.
Although some previous probabilistic models (e.g., the two-side
clustering approach [5]) have indirectly captured the difference
between user ratings and user preferences, our approach is more
direct –we explicitly convert ratings into preferences.

The core part of our algorithm is a probabilistic mechanism that is
able to transform the rating information of items into the
likelihood for items to be preferred by a user. With this
mechanism, instead of computing the similarity between users
based on the observed ratings, we can compare users based on
their underlying preference patterns on the items. Furthermore,
with the same conversion mechanism, we can also predict the
rating for a new user on an item by first computing the underlying
preference of the user on the item and then computing the most
likely rating category for that item. This new framework is similar
to the model-based approaches in that global models will be
computed and computation is efficient.

The rest of this paper is arranged as follows: Section 2 discusses
the details of this new framework for collaborative filtering. The

empirical study is presented in Section 3. Section 4 concludes this
work and discusses the potential future work.

2. A New Framework for Collaborative
Filtering

A major problem with the traditional memory-based approach is
that, a user’s rating behavior and preference behavior are tangled
with each other. As a result, the user similarity is often computed
based on the surface rating patterns, and a direct combination of
other users’ surface ratings is used to predict the rating for a new
user. Since users may have different rating tendencies and two
users with different preferences may accidentally have similar
surface rating patterns, it is desirable to separate the preference
information from the rating information, so that we can explicitly
find similar users in terms of either their preference patterns or the
rating patterns. In this paper, we propose a memory-based
probabilistic model, which decouples the rating pattern and the
preference pattern of a user. We treat each user within the training
database as a separate model (or expert), and a database of users
serve as an ensemble of models. A Bayesian approach can then be
used to predict the rating for a new user by combining the
predictions given by all the expert models.

In this model, in order to predict the ratings for test users, four
steps are required:

1) First, a “conversion model” is computed for all users,
including both the training and test users. Such a conversion
model makes it possible to estimate the likelihood of user
preferring an object based on the observed rating pattern of
the user. This is a crucial step in this new model, because,
with this conversion, we can explicitly estimate the
preference similarity of users without worrying about the
variation of the rating behavior among different users.

2) Second, the preference similarities between the test user and
the training users are computed using the estimated
preference information. As in the work by Pennock et al.
[12], the similarity between two users is computed based on
the likelihood of mistaking one user as the other.

3) Third, the preference patterns on the un-rated objects for the
test user are computed as the combination of preference
patterns of training users weighted by their preference
similarities. This is essentially Bayesian model averaging.

4) Finally, the preference patterns predicted for the test user are
converted back to the rating patterns by reversing the
conversion model already computed in step 1.

Unlike most other memory-based approaches, where all inferences
are based on the surface rating patterns, our new model is able to
convert the observed rating patterns into the underlying
preference patterns, which, presumably, are more comparable
between different users. The final predicted ratings are obtained
by converting the estimated preference patterns back to ratings
according to the test user’s rating patterns.

2.1 Decoupled modeling of preferences
and ratings
To illustrate how we can decouple the preference and rating
models, we first use a simple example to explain how to convert

ratings into preference likelihoods, and then give a formal
description.

2.1.1 Intuition
Consider an example of two users (‘A’ and ‘B’) who have similar
“taste” of preferences for 10 items. Suppose user ‘A’ tends to give
all items a higher rating than user ‘B’, as shown in Table 1, where
the items are numbered in the ascending order of preferences.

If we rely on the surface rating patters to compute the similarity of
these two users, we may find that they are not very similar, even if
we normalize each user’s ratings by the user’s average rating

value as done typically in a traditional memory-based approach.
How can we map these surface ratings to somehow more
comparable underlying preference likelihood? We note that, user
‘A’ appear to be more “generous” in assigning ratings, as the
average rating of all the 10 times is higher for ‘A’ than for ‘B’. ,
In particular, ‘A’ has given four items of a rating of ‘4’, while ‘B’
has given only two. Intuitively, a rating of ‘4’ should mean
stronger preference for user ‘B’ than for user ‘A’, since the former
has assigned ‘4’ to fewer items. Based on this simple analysis, we
can see that the distribution of ratings does tell us some
information about the true underlying preferences that the user has
on the objects. More specifically, two aspects of the rating
distribution may influence the likelihood of preference:
1) For a particular rating ‘R’, if there are a large percentage of

objects that are rated less or equal to rating ‘R’, this rating
category has a high chance to be preferred by the user.
Rating category ‘5’ is such an example.

2) For a particular rating ‘R’, if there are a large percentage of
objects that are rated exactly in this category, this rating
category will have less chance to be preferred by the user.
Rating category ‘4’ for user ‘A’ is such an example.

Table 2: The rating distribution for user ‘A’ and ‘B’

Rating(R) 1 2 3 4 5
Pr(Rating=R) 0.1 0.1 0.3 0.4 0.1
Pr(Rating≤R) 0.1 0.2 0.5 0.9 1 User A

Pr(Rating≤R)−P
r(Rating=R)/2

0.05 0.15 0.35 0.7 0.95

Rating(R) 1 2 3 4 5
Pr(Rating=R) 0.2 0.3 0.2 0.2 0.1
Pr(Rating≤R) 0.2 0.5 0.7 0.9 1 User B

Pr(Rating≤R)−P
r(Rating=R)/2

0.1 0.35 0.6 0.8 0.95

To combine these two criterions together, we can use the
following ‘halfway accumulative distribution’ to approximate the
likelihood of preference:

Pr(R is preferred) = Pr(Rating≤R)−Pr(Rating=R)/2 (1)

where R is a rating category. The first term on the right hand side
Pr(Rating≤R) implements the idea that a user tends to like items
with rating category ‘R’ if many items are rated under that
category. By subtracting the second term Pr(Rating=R)/2 from the

first term Pr(Rating≤R), we are able to discount the preference of
a rating category if many objects are rated as that category.

Table 2 lists the results for Pr(Rating=R), Pr(Rating≤R) and
Pr(Rating≤R)−Pr(Rating=R)/2 for both users. We see that the fact
that user ‘A’ is more “generous” than ‘B’ is now well captured by
the different preference mappings. In particular, a rating of ‘4’
means slightly stronger preference if given by ‘B’ than if given by
‘A’. Table 3 shows the estimated preference likelihoods of all the
10 items for both users. Clearly, the two users now look much
more similar than in Table 1.

Table 3: Estimated preferences for user ‘A’ and ‘B’
Item 1 2 3 4 5 6 7 8 9 10
Pref(A) 0.05 0.15 0.35 0.35 0.35 0.7 0.7 0.7 0.7 0.95

Pref(B) 0.1 0.1 0.35 0.35 0.35 0.6 0.6 0.8 0.8 0.95

The ‘halfway accumulative distribution’ shown in Equation (1)
thus allows us to convert ratings into the likelihood of preference.
For “reverse engineering”, i.e., finding the most likely rating
category given a computed likelihood of preference, we can
simply find the category that is most likely to generate the
likelihood of preference. Interestingly, the ‘halfway accumulative
distribution’ in Equation (1) can also be proved by the maximum
likelihood estimation. The details of the proof are shown in the
Appendix. Furthermore, it is not difficult to show that the
averaged preference likelihood of any user over all the rated
items, as computed in Equation (1), is exactly 0.5. Therefore, by
using the conversion formula in Equation (1), we are able to
achieve the similar effect as the Pearson Correlation method,
namely adjusting every user to have the same mean in their
preference patterns.

2.1.2 Formal Description
Let x and y be an item and a user, respectively. Let Ry(x) stand for
the rating that user y gives to item x and Py(x) stand for the
likelihood that user y prefers item x. Then, our task is to find out
the distribution of likelihood of preference Py(x) given the rating
category Ry(x). For the sake of simplicity, we can assume that the
distribution of likelihood of preference Py(x) given the rating
information Ry(x) is a Gaussian distribution N(µ(Ry(x),y),
σ(Ry(x),y)), which centers at µ(Ry(x),y) with width of σ(Ry(x),y).
Notice that both the mean and width of the distribution depend on
not only the rating Ry(x) but also the user y, which indicates that
even two different users may give an object the same rating, the
distribution of the likelihood of preference on that object can still
be different. According to the discussion in the previous
subsection, we can use the ‘halfway accumulative distribution’ of
a rating category as the averaged likelihood of preference for that
category. Therefore, the mean of the Gaussian µ(Ry(x),y) can be
written as:

2/)|)(Pr()|)(Pr()),((yxRRyxRRyxR yyy =−≤=µ (2)

where Pr(R≤Ry(x)|y) is the likelihood for user y to rate any item no
higher than the rating category Ry(x), and Pr(R=Ry(x)|y) is the
likelihood for user y to rate any item as category Ry(x). For the
width of the Gaussian distribution σ(Ry(x),y), we can simply set it
as)|)(Pr(yxRR y= , i.e.

)|)(Pr()),((yxRRyxR yy ==σ (3)

Table 1: Rating information for user ‘A’ and ‘B’
Item 1 2 3 4 5 6 7 8 9 10

Rating(A) 1 2 3 3 3 4 4 4 4 5
Rating(B) 1 1 2 2 2 3 3 4 4 5

This is reasonable, because, intuitively, the more objects a user
give category ‘R’ to, the higher the variance in the likelihood of
being preferred by that user within that rating category ‘R’ will
be. Therefore, for a particular rating category ‘R’, the variance of
preference likelihood should be proportional to the percentage of
objects rated within that category, i.e. Pr(R=Ry(x)|y). With the
defined Gaussian distribution N(µ(Ry(x),y),σ(Ry(x),y)) , we can do
two things:

1) Find out the averaged likelihood of being preferred given the
rating category Ry(x). Since we use Gaussian distribution for
describing the distribution of likelihood of being preferred,
the averaged preference likelihood given a rating category of
a user is simply the mean of the Gaussian distribution
µ(Ry(x),y). To simplify the computation, in the later
discussion, we will use the averaged preference likelihood
given a rating category to replace the Gaussian distribution.

2) Compute the most likely rating category given a computed
likelihood of being preferred. To do this, we can simply
search for the Gaussian distribution of a rating category that
has the highest probability of generating the computed
preference likelihood, i.e.

�
�

�

�

�
�

�

� −
=

),(2

)),()((
exp

),(2

1
maxarg)(*

2

2

2 yR

yRxP

yR
xR y

R σ
µ

πσ

(4)

2.2 Computing user similarity
As already pointed out before, there are two different notions of
similarity between users: similarity in the preference pattern and

similarity in the rating pattern. Let ', yy
Pw stand for the

preference similarity between user y and user y’, and ', yy
Rw for

the rating. We now discuss how to compute them.

2.2.1 Computing rating similarity
We define the similarity of user y and y’ in rating patterns as the
likelihood of mistaking user y as user y’ given the rating pattern of
y. In order to define it rigorously, we first introduce some
definitions.

Let {1, 2, …, Rmax} be the set of rating categories. A rating
category i is preferred to category j if and only if number i is

larger than number j. Let)(
~

yR be user y’s rating pattern, which

is defined as the set of counts of objects rated as different rating
categories, or

}1),,({)(
~

maxRRyRCyR ≤≤= (5)

where C(R, y) is the count of objects rated as category R by user y.

With the above definitions, ', yy
Rw , the rating similarity of user y

and user y’, can be defined as:

��
≈=

==

''''

',

)''|)(
~

(

)'|)(
~

(

)''()''|)(
~

(

)'()'|)(
~

(

))(
~

(

)'()'|)(
~

(
))(

~
|'(

yy

yy
R

yyRp

yyRp

ypyyRp

ypyyRp

yRp

ypyyRp
yRypw

 (6)

The last step is realized by assuming that every user has the same
prior p(y). By assuming every rating is generated independently of

others, we further express)'|)(
~

(yyRp as:

�
naxR

R

yRCyRyyRp
1

),()'|Pr()'|)(
~

(
=

= (7)

Where Pr(R|y) stands for the likelihood for user y to come up with
rating R for an arbitrary object. By plugging Equation (7) into

Equation (6), we are able to compute ', yy
Rw , which is useful for

smoothing user patterns.

2.2.2 Compute preference similarity
To compute preference similarity of two users, we first derive the
preference pattern of each user using the method described in
section 2.1, and then compare the derived preference patterns.
According to section 2.1, the likelihood for object x to be
preferred by user y, Py(x), can be approximated as µ(Ry(x),y)
where Ry(x) is the rating of object x by user y. Thus, similar to the
computation of the rating similarity, the preference similarity of

user y and user y’, ', yy
Pw , can also be computed as the likelihood

of mistaking user y’ as user y given the preference pattern of y.

Let)(
~

yX be the set of objects that are rated by user y. The

preference pattern of user y,)(
~

yP , is defined as

)}(
~

|)),(({)}(
~

|)({)(
~

yXxyxRyXxxPyP yy ∈∀=∈∀= µ (8)

The preference similarity of user y and user y’, ', yy
Pw , can be

written as:

�
≈

==

''

',

)''|)(
~

(

)'|)(
~

(

))(
~

(

)'()'|)(
~

(
))(

~
|'(

y

yy
P

yyPp

yyPp

yPp

ypyyPp
yPypw

 (9)

Similarly, we assume that each item is generated independently of

others, and express)'|)(
~

(yyPp as:

∏

∏

∈

∈

=

=

)(
~

)),((
'

)(
~

)(
'

)'),((

)()'|)(
~

(

yXx

yxP
y

yXx

xP
y

y

y

yxR

xPyyPp

µµ
 (10)

There is, however, a flaw in the above expression, i.e. there are
items that are rated by user y but not rated by user y’. In that case,
we will not have rating information Ry’(x) for user y’ on object x,
which is required in Equation (10). This corresponds to the
missing data issue that has been discussed in the introduction
section. There are two heuristic solutions:
1) Item default preference. Set Py’(x) to the averaged preference

likelihood of item x over all the users that have rated object
x.

2) User default preference. Set Py’(x) to the averaged likelihood
of all objects rated by user y’. This is equivalent to setting
Py’(x) to 0.5 uniformly.

3) We will compare the effectiveness of these two methods
later.

2.3 Rating Prediction
Ultimately, our goal is to predict the rating for a test user. Let Y be
the training user database. For each training user y ∈ Y, the

preference pattern is }1|)|{Pr()(
~

maxRRyRyRp ≤≤= , and

the rating pattern is

)}(
~

|)),(({)}(
~

|)({)(
~

yXxyxRyXxxPyP yy ∈∀=∈∀= µ

A test user y0 often has only a small number of items rated. Let

)(
~

0yX stand for the set of items that are rated by user y0. In

order to obtain the rating pattern of the test user y0, we have two
choices:

1) Simple counting. Compute Pr(R| y0) by directly counting the
percentage of items rated as category R by user y. However,
since there are only a small number of objects rated by user
y0, the number of objects may not be large enough to support
a reliable estimate of Pr(R| y0).

2) Smoothing with rating patterns of other users. A better
solution to alleviate this sparse data problem is to find out
which training users are similar to test user y0 in rating, and
smooth the rating pattern of the test user y0 with the rating

patterns of those similar users. Let)(
~

0yRp be the rating

pattern obtained by the simple counting method and

)('
~

0yRp the smoothed rating pattern using users of similar

rating patterns. Then,)('
~

0yRp can be expressed as:

�

�

∈

∈

+

+
=

≤≤=

Yy
yy

R
yy

R
Yy

yy
R

yy
R

p

ww

yRwyRw

yR

RRyRyR

,,

,0,

max0

000

000)|Pr()|Pr(

)|(Pr'

}1|)|({Pr')('
~

 (11)

Note that 0,yy
Rw is used here. With)(

~
yRp computed for the test

user y0, we can easily compute the preference pattern for user y0
using Equation (2) and (3). Then, according to section 2.2.2, we
can compute the preference similarities of the test user y0 and any

other user, 0, yy
Pw . The expected likelihood for user y0 to prefer

an un-rated item x is then computed as:

�

�

∈

∈=

Yy
yy

P
Yy

yyy
P

y
w

xPw

xP
,

,

0

0

0

)(

)(ˆ (12)

Finally, we predict the rating of an un-rated item x for the user y0

by converting the expected likelihood of being preferred)(ˆ
0

xPy

to the most likely rank)(ˆ
0

xRy using the method described in

section 2.1.2.

In summary, there are four steps involved in the prediction of
rating for a test user:

1) Compute the rating pattern of the test user by either the simple
counting method or smoothing with rating patterns of similar

training users. The rate similarity can be computed using the
method described in section 2.2.1.

2) Compute the preference pattern of the test user on the rated
objects using the method presented in Section 2.1.2.

3) Compute the expected preference likelihood an un-rated item x
using Equation (12) with the preference similarity computed using
the method described in Section 2.2.2.

4) Predict the rating category for item x by converting the
expected preference likelihood to the most likely rating category.

One advantage of this model, compared with the previous
approaches to collaborative filtering is the explicit conversion of
the rating pattern into the underlying preference pattern for all
users. Moreover, both user comparisons and prediction
combinations are operated at the level of the preference patterns,
instead of the rating patterns.

3. Experiments

We need to answer three questions about this new model for
collaborative filtering:

1) Is the new model for collaborative filtering effective? To
answer this question, we will compare our model with
several representative existing approaches. Furthermore, we
will vary the size of user database and the number of items
that are rated by the test user to see the effectiveness of our
model in different situations.

2) How does the default preference likelihood influence the
performance? In section 2.2.2, in order to compute the
preference similarity between users, we have to specify the
default preference likelihood of a user for an item that is not
rated by that user. We will examine the effectiveness of the
three methods proposed in Section 2.2.2.

3) How does smoothing of rating patterns influence the
performance of our model? In Section 2.3, in order to handle
the sparse data problem in computing the rating pattern for a
test user, we suggest smoothing the rating pattern of the
testing user with the rating patterns of similar users. We
would like to examine the effectiveness of this smoothing
method.

3.1 Baseline methods
Following [1,2,12], we compare our method to several existing
methods, including the Pearson Correlation Coefficient method,
the vector similarity method and the Personality diagnosis
method. These methods are described below.

• Pearson Correlation Coefficient (PCC)

According to [1], Pearson Correlation Coefficient method predicts
the rating of a test user y0 on item x as:

�

�

∈

∈
−

+=

Yy
yy

Yy
yyyy

yy w

RxRw

RxR
,

,

0

0

00

))((

)(ˆ (13)

where the coefficient
0, yyw is computed as

��

�

∈∈

∈

−−

−−
=

)(
~

)^(
~

2

)(
~

)^(
~

2

)(
~

)^(
~

,
))(())((

))()()((
00

0

oo

o

yXyXx
yy

yXyXx
yy

yXyXx
yyyy

yy
RxRRxR

RxRRxR

w

(14)

• Vector Similarity (VS)

This method is very similar to the previous method except that the
correlation coefficient

0, yyw is computed as:

��

�

∈∈

∈=

)(
~

2

)(
~

2

)(
~

)^(
~

,

0

0

0

0

)()(

)()(

yXx
y

yXx
y

yXyXx
yy

yy
xRxR

xRxR

w o
(15)

• Personality Diagnosis (PD)

This is a method introduced by Pennock et al. in [4]. It treats each
user in the training pool as an individual model. In order to
compute the ratings for active (test) users, it first computes the
likelihood of generating the observed ratings of the active user for
each model (e.g. user) within the training pool, i.e.

∏
∈ �

�

�

�

�
�

�

� −
−∝

)(
~ 2

2

0

0

0 2

))()((
exp)|(

yXx

yy
yy

xRxR
RRp

σ
 (16)

Then, the likelihood for the test user to rate an unrated item x as v
is computed as:

� �
�

�

�

�
�

�

� −
−∝=

y

y
yyyy

vxR
RRpRvxRp

2

2

2

))((
exp)|(}){|)((

00 σ

In our experiments, the standard deviation σ is set to 1

(17)

3.2 Description of Datasets
We experimented with two commonly used data sets of movie
ratings. The first is named ‘MovieRating’, which can be obtained
from the web site [9], and the second one is a subset of the
standard EachMovie dataset obtained from the web site of
Compaq research [10]. For the EachMovie dataset, 2000 users
were randomly selected from those who have rated more than 40
movies. We did not use all the available user data because we
want to test our algorithms in a more challenging and realistic
scenario when the system has not yet acquired a large user base.
In general, we should expect an algorithm to perform better with
more user data. The basic properties of these two datasets are
listed in Table 3.

Table 3: Description of experimental datasets

 MovieRating EachMovie

Number of Ratings 5 6

Number of Users 500 2000

Number of Items 1000 1648

Average number of
rated items

87.73 129.62

To compare the methods in full spectrum, we vary both the
number of users in the training database and the number of
observed items that are rated by the test user, as what have been
done in [1, 8, 12]. For the smaller database ‘MovieRating’, we

allow the number of users in the training database to be 100 and
200, and the number of exposed items rated by the test users to be
5, 10 and 20. For the larger database ‘EachMovie’, we choose the
size of training database to be 200 and 400, and the number of
exposed items that are rated by the test users to be 5, 10 and 20. In
all cases, the rest of the users are used for testing. The reason for
choosing a relatively larger number of users in the training
database for the ‘EachMovie’ database is because the
‘EachMovie’ database contains considerably larger number of
users and movies than the ‘MovieRating’ database.

3.3 Evaluation Measure
For evaluation, we look at the mean absolute deviation of the
predicted ratings from the actual ratings on items that users in the
test set have actually rated, i.e.

�
∈

−=
)(

~
0

00

0

0
|)(ˆ)(|

1

yXx
yy

y
y xRxR

m
S (15)

where)(ˆ
0

xRy is the predicted rating on item x by user y0,)(
0

xRy

is the actual rating on item x by user y0 and my0 is the number of
test items that have been rated by the test user y0. We refer to this
measure as the mean absolute error (MAE) in the rest of this
paper. There are some other measures like the Receiver Operating
Characteristic (ROC) as a decision-surrport accuracy measure [7]
and the normalized MAE. But since MAE is the most commonly
used metric and has been reported in most previous research [1, 2,
7, 8, 12], we chose it as the evaluation measure in our
experiments to make our results more comparable.

3.4 Experiment Results
In order to answer the three questions raised at the beginning of
this section, we design three corresponding groups of
experiments. The results of these three experiments are discussed
in the following three subsections.

3.4.1 Effectiveness of the New Mode
We compare the new model with the three baseline methods over
the two datasets using the MAE as the evaluation metric. The
results are shown in Table 4 and 5, respectively.

From Table 4 and 5, we see that the new model outperforms all
the four baseline methods substantially and consistently over both
the ‘MovieRating’ and ‘EachMovie’ databases and for all the
settings. The improvement is substantial because, over both the
‘MovieRating’ and ‘EachMovie’ databases, the new model with
the least information (i.e. the smallest number of rated items and
smallest number of users in the training set) performs even better
than all the baseline methods with the most information.
Therefore, we can conclude that the new model is more effective
in predicting the ratings for the test users than the existing
methods we tested.

3.4.2 Effectiveness of Smoothing in Computing the
Rating Pattern
In Section 2.3, we present two different ways to compute the
rating pattern for the test user, either based on the unsmoothed
percentage of each rating category or through smoothing the
rating pattern of the test user with other similar users in the
training database. In Table 6 and 7, we show the performance of

Table 4: MAE results for four baseline methods and the new
model on the ‘MovieRating’ database. A smaller number indicates
a better performance.

 5 Items
rated

10 Items
rated

20 Items
rated

PCC 0.881 0.832 0.809

VS 0.859 0.834 0.823

PD 0.839 0.826 0.818

100 Training

 Users

New Model 0.788 0.776 0.763

PCC 0.878 0.828 0.801

VS 0.862 0.950 0.854

PD 0.835 0.816 0.806

200 Training

Users

New Model 0.768 0.760 0.743

Table 5: MAE results for four baseline methods and the new
model on the ‘EachMovie’ database. A smaller number indicates a
better performance.

 5 Items
rated

10 Items
rated

20 Items
rated

PCC 1.22 1.16 1.13

VS 1.25 1.24 1.26

PD 1.19 1.16 1.15

200 Training

 Users

New Model 1.04 1.01 0.98

PCC 1.22 1.16 1.13

VS 1.32 1.33 1.37

PD 1.18 1.16 1.15

400 Training

Users

New Model 1.03 1.00 0.97

Table 6: MAE results for the new model on the ‘MovieRating’
database with and without smoothing in computing the rating
pattern for test users. A smaller number indicates a better
performance.

 5 Items 10 Items 20 Items

w.o. smoothing 0.814 0.788 0.771 100 Training

Users w.i. smoothing 0.788 0.776 0.763

w.o. smoothing 0.789 0.766 0.747 200 Training

Users w.i. smoothing 0.768 0.760 0.743

Table 7: MAE results for the new model on the ‘EachMovie’
database with and without smoothing in computing rating pattern
for testing users. A smaller number indicates a better performance.

 5 Items 10 Items 20 Items

w.o. smoothing 1.06 1.01 0.98 200 Training

Users w.i. smoothing 1.04 1.01 0.98

w.o. smoothing 1.05 1.01 0.98 400 Training

Users w.i. smoothing 1.03 1.00 0.97

the new model with and without the smoothing procedure in
computing the rating pattern for the test user.

In general, smoothing of the rating pattern outperforms the
unsmoothed simple percentage. Particularly, when the number of
exposed items rated by the test user is small, the smoothing
technique appears to help even more in the performance. Take the
‘MovieRating’ database with 100 training users as an example.
When there are only 5 rated items exposed to the system, with the
smoothing technique, the MAE is improved by 0.026. When the
number of exposed items rated by the test user grows to 10 and
20, the improvement in MAE decreases to 0.012 and 0.008. This
is expected, since when the number of rated items of test users is
smaller, the sparse data issue is more severe in estimating the
rating pattern. Therefore, the smoothing technique is more helpful
when there are only a small number of rated items available.

3.4.3 Effectiveness of Different Default Preferences
In section 2.2.2, we discussed the issue of missing data, namely
the items that are rated by the test user but not by the training
users. We proposed two different strategies for filling out the
missing preferences for these items, i.e., item default preference
and user default preference.

Table 8: MAE results for the new model on the ‘MovieRating’
database using the two default preference-setting methods. A
smaller number indicates a better performance.

 5 Items 10 Items 20 Items

Item default 0.787 0.777 0.765 100 Training

Users User default 0.787 0.777 0.762

Item default 0.768 0.762 0.742 200 Training

Users User default 0.768 0.761 0.742

Table 9: MAE results for the new model on the ‘EachMovie’
database using the two default preference-setting methods. A
smaller number indicates a better performance.

 5 Items 10 Items 20 Items

Item Default 1.04 1.01 0.98 200 Training

Users User Default 1.04 1.01 0.98

Item Default 1.03 1.00 0.98 400 Training

Users User Default 1.03 1.00 0.97

These two methods are compared in Table 8 and Table 9.
Interestingly, the two strategies have almost identical performance
in all cases. We suspect that the mean preference likelihood by
averaging the preference of different users on the same item may
actually be around 0.5, which is the average preference value of a
user.

4. Conclusions and Future Work

In this paper, we propose a new probabilistic framework for
collaborative filtering. The model effectively addresses a critical
issue in collaborative filtering, that is, users with similar
preference patterns can rate objects differently due to the use of
different rating schemes. Unlike previous work, where user
similarities are computed directly using the surface rating
information, our model first converts the surface ratings of objects
into an underlying preference likelihood, and then computes the

similarity between users based on the derived preference patterns
instead of the surface rating patterns. By doing so, we are able to
explicitly separate the preference information from the rating
information. More specifically, we have two models for each user.
One is a preference model, capturing which type of objects a user
prefers, and the other is a rating model, capturing how a user rates
objects according to his/her preference. Our experiments on two
commonly used movie rating data sets show that the proposed
new model consistently and substantially outperforms four
representative existing methods.

As stated in Section 2.2.1, when a rating is converted into the
likelihood of preference, it should result in a distribution.
However, for the simplicity of computation, we simply use the
mean of the distribution to replace the whole distribution. One
future research direction would be to compute the similarity of
users directly using the distribution instead of the mean of the
distribution. Another limitation of this work is that the
transformation of ratings into the likelihood of preference is
defined according to a very simple probabilistic model. A better
solution would be to find out the transformation according to
more sophisticated optimization criterion, which is another
interesting direction to further explore. For example, a graphic
model may be used to find the optimal transformation.

5. REFERENCES

[1] J. S. Breese, D. Heckerman and C. Kadie, Empirical Analysis
of Predictive Algorithms for Collaborative Filtering,
Proceeding of the Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI), 1998.

[2] J. L. Herlocker, J. A. Konstan, A. Brochers and J. Riedl. An

Algorithm Framework for Performing Collaborative
Filtering. In Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 1999.

[3] I. M. Soboroff and C. Nicholas. Collaborative Filtering and

the Generalized Vector Space Model. In Proceedings of the
23rd Annual International Conference on Researech and
Development in Information Retrieval (SIGIR), 2000.

[4] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J.

Riedl, Grouplens: An Open Architecture for Collaborative
Filtering of Netnews. In Proceedings of the ACM 1994
Conference on Computer Supported Cooperative Work,
pages 175-186, 1994.

[5] T. Hofmann and J. Puzicha, Latent Class Models for

Collaborative Filtering, In Proceedings of International Joint
Conference on Artificial Intelligence (UAI), 1999.

[6] I. M. Soboroff and Charles K. Nicholas. Combining Content

and Collaboration in Text Filtering. In Proceedings of the
IJCAI’99 Workshop on Machine Learning for Information
Filtering, 1999

[7] P. Melville, R. J. Mooney, R. Nagarajan, Content-Boosted

Collaborative Filtering for Improved Recommendations. In

Proceedings of the the Eighteenth National Conference on
Artificial Intelligence (AAAI), 2002.

[8] SWAMI: a framework for collaborative filtering algorithm

development and evaluation. In Proceedings of the 23rd
Annual International Conference on Researech and
Development in Information Retrieval (SIGIR), 2000.

[9] http://www.cs.usyd.edu.au/~irena/movie_data.zip

[10] http://research.compaq.com/SRC/eachmovie

[11] A. Dempster, N. Laird and D. Rubin. Maximum Likelihood

from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, B 39:1-38, 1977.

[12] D. M. Pennock, E. Horvitz, S. Lawrence and C. L. Giles,

Collaborative Filtering by Personality Diagnosis: A Hybrid
Memory- and Model-Based Approach, in Proceedings of the
Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI), 2000.

6. Appendix

In this appendix, we will derive Eqn. (1) by using Maximum
Likelihood Estimation (MLE). Let {1, 2, …, Rmax} be the set of
rating categories, {X1, X2, …, XRmax} be the set of items, each
being assigned a rating category, and θ={p1, p2, …, pRmax} be the
set of probabilities for each category to be preferred. Assuming
that L is a ranking list that is consistent with the rating pattern,
namely all the items that rated in a high category will be put at the
beginning of the ranking list. The appropriate preference
probabilities θ should have a large likelihood to generate such
consistent ranking list, namely

)|Pr(maxarg* θθ
θ

L= (A1)

The generation probability for the ranking list L Pr(L|θ) can be
written as the product of likelihood of generating the correct order
for any two items, i.e.

∏ ∏∏ ∏
∈≠<

∈
∈

>
��
�
�

�

�

��
�
�

�

�

>=
i Xxxji

Xx
Xx i

i

j

xxxxL
'

'

)|'Pr()|'Pr()|Pr(θθθ

(A2)

Where, Pr(x>x’) is the probability that item x is preferred to item
x’. Notice that for two items belonging to the same category, any
order will be consistent with the rating patterns. Pr(x>x’) can be
written as expressions of preference probabilities θ, i.e.:

)1()|'Pr()'()(xRxR ppxx −=> θ (A3)

With expression (A3) and (A2), we have the likelihood Pr(L|θ) as:

() �
	

�

�

�
�

�

�

−

×−
=

∏

∏
−

<

R

yRCyRC
RR

RR

yRC
R

yRC
R

pp

pp

L
2/)1),()(,(

'

)',(
'

),(

)1(

)1(

)|Pr(θ (A4)

By maximizing the likelihood Pr(L|θ), we can compute the most
likely preference probabilities θ, which will directly result in the
Equation (1).

